精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC的面积为12,AC=3,现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是(  )

A. 3 B. 5 C. 6 D. 10

【答案】D

【解析】

BBNACN,BMADM,根据折叠得出∠C′AB=CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点BAD的最短距离是8,得出选项即可.

解:如图:
BBNACN,BMADM,
∵将ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,
∴∠C′AB=CAB,
BN=BM,
∵△ABC的面积等于12,边AC=3,
×AC×BN=12,
BN=8,
BM=8,
即点BAD的最短距离是8,
BP的长不小于8,
即只有选项D符合,
故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中菱形ABOC的顶点O在坐标原点BOx轴的负半轴上,∠BOC=60°,顶点C的坐标为m),反比例函数的图像与菱形对角线AO交于D连接BDBDx轴时k的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°AD∠BAC的平分线,OAB上一点, OA为半径的⊙O经过点D

1)求证:BC⊙O切线;

2)若BD=5DC=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了调查今年有多少名学生参加中考,小明从全市所有家庭中随机抽查了200个家庭,发现其中有10个家庭有子女参加中考。

(1)本次抽查的200个家庭中,有子女参加中考的家庭的频率是多少?

(2)如果你随机调查一个家庭,估计该家庭有子女参加中考的概率是多少?

(3)已知全市约有1.3×106个家庭,假设有子女参加中考的每个家庭中只有一名考生,请你估计今年全市有多少名考生参加中考?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:等边三角形轴于点,且满足

1)如图,求的坐标及的长;

2)如图,点延长线上一点,点右侧一点,,且.连接

求证:直线必过点关于轴对称的对称点;

3)如图,若点延长线上,点延长线上,且,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两座城市的中心火车站A,B两站相距360 km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54 km/h,当动车到达B站时,特快列车恰好到达距离A135 km处的C站.求动车和特快列车的平均速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月30天计算,这款商品将开展每天降价1的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第xx为整数的销售量为y件.

直接写出yx的函数关系式;

设第x天的利润为w元,试求出wx之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现)

如图∠ACB=ADB=90°,那么点D在经过A,B,C三点的圆上(如图①).

如图②,如果∠ACB=ADB=a(a≠90°)(点C,DAB的同侧),那么点D还在经过A,B,C三点的圆上吗?请证明点D也不在⊙O内.

(应用)

利用(发现)和(思考)中的结论解决问题:

(1)如图④,已知∠BCD=BAD,CAD=40°,求∠CBD的度数.

(2)如图⑤,若四边形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延长线于F,点EAB上,∠AED=ADF,CD=3,EC=2,求ED的长.

查看答案和解析>>

同步练习册答案