精英家教网 > 初中数学 > 题目详情

【题目】如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A处,折痕所在直线同时经过边AB、AD(包括端点),设BA=x,则x的取值范围是 .

答案

【解析】

试题作出图形,根据矩形的对边相等可得BC=AD,CD=AB,当折痕经过点D时,根据翻折的性质可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;当折痕经过点B时,根据翻折的性质可得BA′=AB,此两种情况为BA′的最小值与最大值的情况,然后写出x的取值范围即可.

试题解析:

如图,四边形ABCD是矩形,AB=8,AD=17,

BC=AD=17,CD=AB=8,

当折痕经过点D时,

由翻折的性质得,A′D=AD=17,在RtA′CD中,A′C=15 BA′=BC-A′C=17-15=2;

当折痕经过点B时,由翻折的性质得,BA′=AB=8,

x的取值范围是2≤x≤8.

故答案为:2≤x≤8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点DDEAD且与AC的延长线交于点E.

(1)求证:DCDE

(2)tanCABAB=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】线段AB12cm,点C在线段AB上,点DE分别是ACBC的中点.

1)若点C恰好是AB中点,求DE的长.

2)若AC4cm,求DE的长.

3)若点C为线段AB上的一个动点(点C不与AB重合),求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2014个时,实线部分长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,OAC的中点,过点O的直线分别与ABCD交于点EF,连接BFAC于点M,连接DEBO.若∠COB60°FOFC,则下列结论:①FBOCOMCM②△EOB≌△CMB③四边形EBFD是菱形;④MBOE32.其中正确结论的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DF=BE

1)求证:CE=CF

2)若点GAD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的曲线是函数y (m为常数)图象的一支.

(1)求常数m的取值范围;

(2)若该函数的图象与正比例函数y2x的图象在第一象限的交点为A(2n),求点A的坐标及反比例

函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将若干枝铅笔分给甲、乙两个班级,甲班有一人分到6枝,其余的每人都分到13枝,乙班有一人分到5枝,其余的每人都分到10枝.如果分到两个班级的铅笔数目相同,并且大于100而不超过200那么甲、乙两个班各有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.

分数段

频数

百分比

38

0.38

0.32

10

0.1

合计

100

1

书法作品比赛成绩频数直方图

根据上述信息,解答下列问题:

(1)请你把表中空白处的数据填写完整.

(2)请补全书法作品比赛成绩频数直方图.

(3)80(80)以上的书法作品将被评为等级奖,试估计全市获得等级的幅数.

查看答案和解析>>

同步练习册答案