【题目】线段AB=12cm,点C在线段AB上,点D、E分别是AC和BC的中点.
(1)若点C恰好是AB中点,求DE的长.
(2)若AC=4cm,求DE的长.
(3)若点C为线段AB上的一个动点(点C不与A,B重合),求DE的长.
【答案】(1)DE的长为6cm;(2)DE=6cm;(3)DE=6cm.
【解析】
(1)根据线段中点的性质计算即可;
(2)根据线段中点的性质和给出的数据,结合图形计算;
(3)同(1)的解法相同;
由AB=12cm,点D. E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=6cm;由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D. E分别是AC和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度;
(1)∵点D是AC中点,
∴AC=2AD=6,
又∵D、E分别是AC和BC的中点,
∴DE=DC+CE=AC+BC=AB=6;
故DE的长为6cm;
(2)∵AB=12cm,AC=4cm,
∴BC=8cm,
∵点D、E分别是AC和BC的中点,
∴DC=AC=2,CE=BC=4,
∴DE=6cm;
(3)∵DE=DC+CE=AC+BC=AB
而AB=12,
∴DE=6cm.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示
(1)求点P在BC上运动的时间范围;
(2)当t为何值时,△APD的面积为10cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x、y的二元一次方程组 的解都为正数。
(1)求a的取值范围;
(2)化简|a+1||a1|;
(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,一次函数y=x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.
(1)直线CD的函数表达式为______;(直接写出结果)
(2)在x轴上求一点P使△PAD为等腰三角形,直接写出所有满足条件的点P的坐标.
(3)若点Q为线段DE上的一个动点,连接BQ.点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的y轴上?若存在,求点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与x轴交于点A(4,0),与y轴交于点B(0,-4),若点E在线段AB上,OE⊥OF,且OE=OF,连接AF.
(1)猜想线段AF与BE之间的关系,并证明;
(2)过点O作OM⊥EF垂足为D,OM分别交AF、BA的延长线于点C、M若BE=,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解填空,并在括号内填注理由.如图,已知AB//CD,M,N分别交AB,CD于点E,F,,求证:EP//FQ.
证明:AB//CD(_________),
(__________).
又(_____________)
∴(___________)
即:( )
∴EP//______.(________).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com