【题目】如图,在□ABCD中,点E、F是对角线BD上的两点,且BE=DF.
(1)求证:四边形AECF是平行四边形.
(2)如果四边形ABCD是菱形,求证:四边形AECF也是菱形.
(3)如果四边形ABCD是矩形,请判断四边形AECF的形状,不必写出证明过程.
【答案】(1)见详解;(2)见详解;(3)四边形AECF是平行四边形.
【解析】
(1)根据两条对角线相互平分的四边形是平行四边形即可证明四边形AECF是平行四边形;(2)根据对角线互相垂直的四边形是菱形即可证明;
(3)因为矩形的对角线相等,根据对角线互相平分的四边形可判定AECF的形状.
证明:(1)如图,连AC,设AC、BD相交于点O,
,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵BE=FD,
∴OB-BE=OD-DF,即OE=OF,
∴四边形AECF是平行四边形;
(2)∵四边形ABCD是菱形,
∴AC⊥BD,即AC⊥EF;
由(1)得:四边形AECF是平行四边形,
∴四边形AECF是菱形;
(3)∵四边形ABCD是矩形,
∴OA=OC,OB=OD,
∵BE=FD,
∴OB-BE=OD-DF,即OE=OF,
∴四边形AECF是平四边形.
科目:初中数学 来源: 题型:
【题目】如下几个图形是五角星和它的变形.
(1)图甲是一个五角星 ABCDE,则∠A+∠B+∠C+∠D+∠E 的度数为 ;(不必 写过程)
(2)如图乙,如果点 B 向右移动到 AC 上时,则∠A+∠EBD+∠C+∠D+∠E 度数为 ;(不必写过程)
(3)如图丙,点 B 向右移动到 AC 的另一侧时,(1)的结论成立吗?为什么?
(4)如图丁,点 B,E 移动到∠CAD 的内部时,结论又如何?(不必写过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图形中每一小格正方形的边长为1,已知△ABC
(1)AC的长等于 .(结果保留根号)
(2)将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是 ;
(3)画出将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,并写出A点对应点A1的坐标?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:一般地,一个二元一次方程ax+by=c (a、b、c为常数,且a、b均不为0)有无数组解,我们规定:将其每一个解中x、y的值分别作为一个点的横、纵坐标描点在平面直角坐标系中,这样我们就得到了二元一次方程的图像:一条直线。即二元一次方程的解均满足其对应直线上点的坐标:反之直线上点的坐标均为其对应的二元一次方程的解。如2x -y = 0其中一解x=1,y=2则对应其图像上一点(1,2).
(1)如图,4x+3y=12的图像为直线m,其与x轴交点A的坐标为 ;其 与 y轴交点B的坐标为 ;
(2如图,ax+by=﹣5的图像为直线n,其与x轴交于C(,0),与(1)中直线m交于P,若点P的横坐标为1 ,求a和b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线交点为O,正方形OEFG的边长与正方形ABCD的边长相等,若将正方形OEFG绕点O旋转,试说明旋转到如图的位置时,两正方形重叠部分的面积与正方形面积之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.
(1)请根据题意补全图1;
(2)猜测BD和CE的数量关系并证明;
(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,补全图形,直接写出PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么.
正常情况下,在运动时一个岁的人所能承受的每分钟心跳的最高次数是多少?
一个岁的人运动时秒心跳的次数为,请问他有危险吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com