【题目】如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求k的值和抛物线的解析式.
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,连接BN.
①若△BPN是直角三角形,求点N的坐标.
②当∠PBN=45°时,请直接写出m的值.(注:当k1k2=﹣1时,直线y=k1x+b1与直线y=k2x+b2垂直)
【答案】(1)k=﹣, y=﹣x2+x+2;(2)①点N(,);②m=或m=
【解析】
(1)把点坐标代入直线解析式可求得,则可求得点坐标,由、的坐标,利用待定系数法可求得抛物线解析式;
(2)①分和两种情况讨论,即可求解;
②有两解,点在的上方或下方,作辅助线,构建等腰直角三角形,由 得,设,则由,得,,根据,可得和的解析式,分别与抛物线联立方程组,可得结论.
解:(1)把代入中得,,
,
直线的解析式为:,
,
把和代入抛物线中,
则,
解得:,
二次函数的表达式为:;
(2)①当时,且,
,
,
点的纵坐标为2,
,
(舍去),,
点坐标,;
当时,
直线的解析式为:,
,
(舍去),,
点N(,);
②有两解,点在的上方或下方,
如图2,过点作的垂线交轴于点,
过点作的垂线,垂足为点.
由 得,
,
设,则由,
,
得,,
由,解得,
,
从而,
即,,
由,,得:
直线,直线.
则,
解得:(舍),,
即;
则,
解得:(舍,;
即;
故与.
科目:初中数学 来源: 题型:
【题目】下列命题中,是真命题的是( )
A.将函数y=x+1向右平移2个单位后所得函数的解析式为y=x
B.若一个数的平方根等于其本身,则这个数是0和1
C.对函数y=,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点坐标分别为、、.
(1)点关于坐标原点对称的点的坐标为______;
(2)将绕着点顺时针旋转,画出旋转后得到的;
(3)在(2)中,求边所扫过区域的面积是多少?(结果保留).
(4)若、、三点的横坐标都加3,纵坐标不变,图形的位置发生怎样的变化?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个二次函数图象的顶点是,且与轴的交点的纵坐标为4.
(1)求这个二次函数的表达式;
(2)当取哪些值时,的值随值的增大而增大?
(3)点在这个二次函数的图象上吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从A城市到B城市要翻过一座大山,现需要打通隧道,修建高铁方便两地出行,已知在A城市的北偏东30°方向和B城市的北偏西67°方向有一C地,A,C相距230km,求A,B两个城市之间的距离.(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.7,结果精确到1km)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点(1,0),且对称轴为直线,其部分图象如图所示.对于此抛物线有如下四个结论:①<0; ②;③9a-3b+c=0;④若,则时的函数值小于时的函数值.其中正确结论的序号是( )
A.①③B.②④C.②③D.③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为4,E,F分别是AB,AD边上的动点,BE=AF,∠BAD=120°,则下列结论:①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则. 其中正确结论的序号有________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点,过作轴于点.点为反比例函数图象上的一动点,过点作轴于点,连接.直线与轴的负半轴交于点.
(1)求反比例函数的表达式;
(2)若,求的面积;
(3)是否存在点,使得四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com