【题目】如图,菱形ABCD的边长为4,E,F分别是AB,AD边上的动点,BE=AF,∠BAD=120°,则下列结论:①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF=1,则. 其中正确结论的序号有________.
【答案】①②③④
【解析】
①易证△ABC为等边三角形,得AC=BC,∠CAF=∠B,结合已知条件BE=AF可证△BEC≌△AFC;②得FC=EC,∠FCA=∠ECB,得∠FCE=∠ACB,进而可得结论;③证明∠AGE=∠BFC则可得结论;④分别证明△AEG∽△FCG和△FCG∽△ACF即可得出结论.
在四边形是菱形中,
∵,
∴
∵
∴
∴△ABC为等边三角形,
∴
又,
∴,故①正确;
∴,
∴∠FCE=∠ACB=60°,
∴为等边三角形,故②正确;
∵∠AGE+∠GAE+∠AEG=180°,∠BEC+∠CEF+∠AEG=180°,
又∵∠CEF=∠CAB=60°,
∴∠BEC=∠AGE,
由①得,∠AFC=∠BEC,
∴∠AGE=∠AFC,故③正确;
∴∠AEG=∠FCG
∴△AEG∽△FCG,
∴,
∵∠AGE=∠FGC,∠AEG=∠FCG
∴∠CFG=∠GAE=∠FAC,
∴△ACF∽△FCG,
∴
∴
∵AF=1,
∴BE=1,
∴AE=3,
∴,故④正确.
故答案为:①②③④.
科目:初中数学 来源: 题型:
【题目】如图,分别过第二象限内的点作,轴的平行线,与,轴分别交于点,,与双曲线分别交于点,.
下面三个结论,
①存在无数个点使;
②存在无数个点使;
③存在无数个点使.
所有正确结论的序号是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.
(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).
(1)试说明点C在一次函数的图象上;
(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;
(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中
(1)请写出△ABC各点的坐标;
(2)求出△ABC的面积;
(3)如图,将三角形ABC向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A1B1C1,并写出点A1、B1、C1的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.
(1)请直接写出这条抛物线和直线AE、直线AC的解析式;
(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;
(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,
①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;
②在①的条件下,判断CG与AE的数量关系,并直接写出结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com