精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD的边长为4EF分别是ABAD边上的动点,BEAF,∠BAD120°,则下列结论:①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若AF1,则 其中正确结论的序号有________

【答案】①②③④

【解析】

①易证ABC为等边三角形,得AC=BC,∠CAF=B,结合已知条件BE=AF可证BEC≌△AFC;②得FC=EC,∠FCA=ECB,得∠FCE=ACB,进而可得结论;③证明∠AGE=BFC则可得结论;④分别证明AEG∽△FCGFCG∽△ACF即可得出结论.

在四边形是菱形中,

∴△ABC为等边三角形,

,故①正确;

∴∠FCE=ACB=60°,

为等边三角形,故②正确;

∵∠AGE+GAE+AEG=180°,∠BEC+CEF+AEG=180°

又∵∠CEF=CAB=60°,

∴∠BEC=AGE

由①得,∠AFC=BEC

∴∠AGE=AFC,故③正确;

∴∠AEG=FCG

∴△AEG∽△FCG

∵∠AGE=FGC,∠AEG=FCG

∴∠CFG=GAE=FAC

ACF∽△FCG

AF=1

BE=1

AE=3

,故④正确.

故答案为:①②③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别过第二象限内的点轴的平行线,与轴分别交于点,与双曲线分别交于点

下面三个结论,

①存在无数个点使

②存在无数个点使

③存在无数个点使

所有正确结论的序号是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△ABE为等边三角形,连接DECE,延长AECDF点,则∠DEF的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结ACCE,使AB=AC

1)求证:△BAD≌△AEC

2)若∠B=30°∠ADC=45°BD=10,求平行四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,关于x的二次函数yax22axa0)的顶点为C,与x轴交于点OA,关于x的一次函数y=﹣axa0).

1)试说明点C在一次函数的图象上;

2)若两个点(ky1)、(k+2y2)(k≠0±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;

3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点Ey轴的平行线,与一次函数图象交于点F,当0a≤2时,求线段EF的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中

1)请写出△ABC各点的坐标;

2)求出△ABC的面积;

3)如图,将三角形ABC向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A1B1C1,并写出点A1B1C1的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yax2+bx+3a≠0)与x轴分别交于A(﹣30),B两点,与y轴交于点C,抛物线的顶点E(﹣14),对称轴交x轴于点F

1)请直接写出这条抛物线和直线AE、直线AC的解析式;

2)连接ACAECE,判断△ACE的形状,并说明理由;

3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3m<﹣1,过点DDKx轴于点KDK分别交线段AEAC于点GH.在点D的运动过程中,

DGGHHK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;

②在①的条件下,判断CGAE的数量关系,并直接写出结论.

查看答案和解析>>

同步练习册答案