【题目】已知一个二次函数图象的顶点是,且与轴的交点的纵坐标为4.
(1)求这个二次函数的表达式;
(2)当取哪些值时,的值随值的增大而增大?
(3)点在这个二次函数的图象上吗?
科目:初中数学 来源: 题型:
【题目】将2019个边长为1的正方形按如图所示的方式排列,点A,A1,A2,A3…A2019和点M,M1,M2…M2018是正方形的顶点,连接AM1,AM2,AM3…AM2018分别交正方形的边A1M,A2M1,A3M2…A2018M2017于点N1,N2,N3…N2018,四边形M1N1A1A2的面积是S1,四边形M2N2A2A3的面积是S2,…,则S2018为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,以为直径作半圆,半径绕点顺时针旋转得到,点的对应点为,当点与点重合时停止.连接并延长到点,使得,过点作于点,连接,.
(1)______;
(2)如图,当点与点重合时,判断的形状,并说明理由;
(3)如图,当时,求的长;
(4)如图,若点是线段上一点,连接,当与半圆相切时,直接写出直线与的位置关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+3(a≠0)与抛物线y=+k均经过点A(1,0).直线x=m在这两条抛物线的对称轴之间(不与对称轴重合).函数y=ax2﹣4ax+3(x≥m)的图象记为G1,函数y=+k(x≤m)的图象记为G2,图象G1与G2合起来得到的图形记为G.
(1)求a、k的值.
(2)当m=时,求图形G上y随x的增大而减小时x的取值范围.
(3)当﹣2≤x≤时,图形G上最高点的纵坐标为2,求m的值.
(4)当直线y=2m﹣1与图形G有2个公共点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求k的值和抛物线的解析式.
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,连接BN.
①若△BPN是直角三角形,求点N的坐标.
②当∠PBN=45°时,请直接写出m的值.(注:当k1k2=﹣1时,直线y=k1x+b1与直线y=k2x+b2垂直)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系xOy中,点A(0,2),正方形OABC的顶点B在函数(k ≠ 0,x<0) 的图象上,直线:与函数(k ≠ 0,x<0) 的图象交于点D,与x轴交于点E.
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.
①当一次函数的图象经过点A时,直接写出△DCE内的整点的坐标;
②若△DCE内的整点个数恰有6个,结合图象,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com