精英家教网 > 初中数学 > 题目详情

【题目】如图,定义:在四边形ABCD中,若ADBC,且ADB+∠BCA=180°,则把四边形ABCD叫作互补等对边四边形.如图,在等腰ABE中,AEBE,四边形ABCD是互补等对边四边形.试说明:ABD=∠BACE.

【答案】证明见解析.

【解析】

已知AEBE根据等腰三角形的性质可得EAB=∠EBA.根据互补等对边四边形的定义可得ADBC.利用SAS证明ABD≌△BAC根据全等三角形的性质可得ABD=∠BAC,∠ADB=∠BCA;根据互补等对边四边形的定义可得ADB+∠BCA=180°,即可求得ADB=∠BCA=90°.在等腰ABE中,根据等腰三角形的性质及三角形的内角和定理可得EAB=∠EBA (180°-∠E)=90°-E所以ABD=90°-∠EAB=90°-E由此即可证得结论.

AEBE

∴∠EAB=∠EBA.

四边形ABCD是互补等对边四边形,

ADBC.

ABDBAC中,,

∴△ABD≌△BAC

∴∠ABD=∠BAC,∠ADB=∠BCA.

∵∠ADB+∠BCA=180°,

∴∠ADB=∠BCA=90°.

在等腰ABE中,∵∠EAB=∠EBA (180°-∠E)=90°-E

∴∠ABD=90°-∠EAB=90°-E

∴∠ABD=∠BACE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CD平分∠ACBAB于点DEAC上一点,且DEBC

1)求证:DE=CE

2)若∠A=90°,SBCD=26BC=13,求AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DEABE,DFACF,若BD=CD、BE=CF.

(1)求证:AD平分∠BAC;

(2)直接写出AB+ACAE之间的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】614日是世界献血日,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A”、“B”、“AB”、“O”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:

血型

A

B

AB

O

人数

   

10

5

   

(1)这次随机抽取的献血者人数为   人,m=   

(2)补全上表中的数据;

(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:

从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,EBC边的中点,点P在射线AD上,过PPF⊥AEF.

(1)求证:△PFA∽△ABE;

(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,以AB为直径的⊙OAC于点D.过点CCF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC②△CBA∽△CDE=④AE⊙O的切线,一定正确的结论全部包含其中的选项是(

A. ①② B. ①②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF=45°.将DAE绕点D逆时针旋转90°,得到DCM.

1)求证:EF=FM

2)当AE=1时,求EF的长.

查看答案和解析>>

同步练习册答案