【题目】如图,在平面直角坐标系xOy中,抛物线过点,,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=.
(1)求抛物线的函数表达式;
(2)若点P的横坐标为m,△PCD的面积为S,求S与m之间的函数关系式;
(3)过点P作PE⊥DP,连接DE,F为DE的中点,试求线段BF的最小值.
【答案】(1);(2)(m<3);(3).
【解析】
试题(1)由抛物线过点,根据点在曲线上点的坐标满足方程的关系,应用待定系数法求解即可.
(2)证明△PCD是等边三角形,用m表示CP和PG,由即可求得S与m之间的函数关系式.
(3)通过证明△CPF≌△CDF得∠PCF=∠DCF,根据垂直线段最短的性质知线段BF 的最小值为点B到直线CF的距离.
(1)依题意,得,解得.
∴抛物线的解析式为,即.
(2)∵,∴抛物线的对称轴为.∴C(3,0).
∵,∴.∴.
∴∠OCB=.∴∠PCD=.
∵∠CPD=,∴∠CDP=.∴△PCD是等边三角形.
如图,过点P作PQ⊥x轴于点Q,PG∥x轴,交CD于点G,
∵点P的横坐标为m,∴OQ=m,CQ=3-m.
∴,PG=CQ=3-m.
∴,即(m<3).
(3)如图,连接PF、CF.
∵PE⊥DP,F为DE的中点,∴PF==DF.
∵CP=CD,CF=CF,∴△CPF≌△CDF.∴∠PCF=∠DCF.
∴点F在∠PCD的平分线所在的直线上.
∴BF的最小值为点B到直线CF的距离.
∵∠OCB=∠BCF=,∴点B到直线CF的距离等于OB.
∴BF的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,点O在△ABC内,点P、Q、R分别在边AB、BC、CA上,且OP∥BC,OQ∥CA,OR∥AB,OP=OQ=OR=x,BC=a,CA=b,AB=c,则x=( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.
(1)求证:EF是⊙O的切线;
(2)连接DG,若AC∥EF时.
①求证:△KGD∽△KEG;
②若cosC=,AK=,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成。(1)乙工程队单独完成这项工程需几个月的时间?
(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做个月,乙工程队做个月(均为整数)分工合作的方式施工,问有哪几种施工方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B.C重合),过点F的反比例函数y=的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若k=,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DEEG=,则k=1.其中正确的命题的序号是____________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石
(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?
(2)随着工程的进展,车队需要一次运输沙石超过160吨,为了完成任务,准备新增购这两种卡车共6辆,车队最多新购买载重量为8吨的卡车多少辆?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com