精英家教网 > 初中数学 > 题目详情

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;

(2)请作出ABC关于y轴对称的A′B′C′;

(3)点B′的坐标为   

(4)ABC的面积为   

【答案】(1)作图见解析;(2)作图见解析;(3)B’(2,1);(4)4.

【解析】

试题

(1)由点A的坐标为(-4,5)可知:坐标系的轴与点A下方5个单位长度处水平方向的网格线重合,坐标系的轴与点A右边4个单位长度处竖直方向的网格线重合,由此即可画出相应的平面直角坐标系;

(2)先分别作出点ABC关于轴的对称点A′、B′、C′,再顺次连接这三点即可得到所求图形;

(3)由(2)中所作图形可得B′的坐标;

(4)如图,由SABC=S矩形ADEF-SADB-SBCE-SAFC可计算出△ABC的面积;

试题解析

(1)由题意所建坐标系如下图:

(2)△ABC关于轴的对称△AB′C′如下图所示:

(3)如图,点B′的坐标为:(2,1);

(4)如图,SABC=S矩形ADEF-SADB-SBCE-SAFC=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(-3,4).

(1)求AO的长;

(2)求直线AC的解析式和点M的坐标;

(3)如图2,点P从点A出发,以每秒2个单位的速度沿折线A-B-C运动,到达点C终止.设点P的运动时间为t秒,△PMB的面积为S.

①求S与t的函数关系式;

②求S的最大值.

 

图1 图2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,A1B1A2. A2B2A3A3B3A4……均为等边三角形,若OA1=l,则A6B6A7 的边长为【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACAC的垂直平分线分别交ABAC于点DE.

1)若∠A=40°,求∠DCB的度数;

2)若AE=5DCB的周长为16,求ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.

(1)如图1,当点P与点Q重合时,AE与BF的位置关系是   ,QE与QF的数量关系式   

(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;

(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,
根据图象信息解答下列问题:
(1)甲、乙两地之间的距离为千米.
(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
(3)请直接在图2中的( )内填上正确的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= (x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.

(1)求点A、B、C的坐标;
(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为( )

A.x<-5
B.x>-5
C.x≥-5
D.x≤-5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,BAC=50°,C=70°,求∠DAC及∠BOA的度数.

查看答案和解析>>

同步练习册答案