精英家教网 > 初中数学 > 题目详情

数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是(  )

A.1 B.3 C.1.5 D.2

 

D

【解析】

试题分析:∵数据0,1,1,x,3,4的平均数是2,

∴(0+1+1+x+3+4)÷6=2,

解得:x=3,

把这组数据从小到大排列0,1,1,3,3,4,

最中间两个数的平均数是(1+3)÷2=2,

则这组数据的中位数是2;

故选D.

考点:1、平均数;2、中位数

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(山东滨州卷)数学(解析版) 题型:选择题

如图,OB是AOC的角平分线,OD是COE的角平分线.如果AOB=40°,COE=60°,则BOD的度数为( )

A.50° B.60° C.65° D.70°

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(安徽卷)数学(解析版) 题型:选择题

如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川雅安卷)数学(解析版) 题型:填空题

在平面直角坐标系中,O为坐标原点,则直线y=x+与以O点为圆心,1为半径的圆的位置关系为  

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川雅安卷)数学(解析版) 题型:选择题

a、b、c是ABC的A、B、C的对边,且a:b:c=1:,则cosB的值为(  )

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川达州卷)数学(解析版) 题型:解答题

倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.

习题解答:

习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45°,连接EF,则EF=BE+DF,说明理由.

解答:正方形ABCD中,AB=AD,BAD=ADC=B=90°,

ABE绕点A逆时针旋转90°至ADE′,点F、D、E′在一条直线上.

∴∠E′AF=90°﹣45°=45°=EAF,

AE′=AE,AF=AF

∴△AE′F≌△AEF(SAS)

EF=E′F=DE′+DF=BE+DF.

习题研究

观察分析:观察图(1),由解答可知,该题有用的条件是ABCD是四边形,点E、F分别在边BC、CD上;AB=AD;③∠B=D=90°;④∠EAF=BAD.

类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B=D时,还有EF=BE+DF吗?

研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当BAD=120°,EAF=60°时,还有EF=BE+DF吗?

(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,EF=BE+DF吗?

归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题: 在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,则EF=BE+DF 

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川达州卷)数学(解析版) 题型:计算题

计算:

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川资阳卷)数学(解析版) 题型:解答题

如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;

(2)已知点M为y轴上的一个动点,当ABM为等腰三角形时,求点M的坐标;

(3)将AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与ABC重叠部分的面积记为S,用m的代数式表示S.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(四川眉山卷)数学(解析版) 题型:选择题

甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是( )

A. B.

C. D.

 

查看答案和解析>>

同步练习册答案