【题目】如图,在直角坐标系中有,为坐标原点,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点.
(1)求二次函数的解析式及顶点的坐标;
(2)过定点的直线与二次函数图象相交于两点.
①若,求的值;
②证明:无论为何值,恒为直角三角形;
③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.
【答案】(1),;(2)①;②见解析;③.
【解析】
(1)求出点A、B、C的坐标分别为(0,3)、(-1,0)、(3,0),即可求解;
(2)①S△PMN=PQ×(x2-x1),则x2-x1=4,即可求解;②k1k2==-1,即可求解;③取MN的中点H,则点H是△PMN外接圆圆心,即可求解.
(1),则,
即点的坐标分别为、、,
则二次函数表达式为:,
即:,解得:,
故函数表达式为:,
点;
(2)将二次函数与直线的表达式联立并整理得:
,
设点的坐标为、,
则,
则:,
同理:,
①,当时,,即点,
,则,
,
解得:;
②点的坐标为、、点,
则直线表达式中的值为:,直线表达式中的值为:,
为: ,
故,
即:恒为直角三角形;
③取的中点,则点是外接圆圆心,
设点坐标为,
则,
,
整理得:,
即:该抛物线的表达式为:.
科目:初中数学 来源: 题型:
【题目】如图,直线a∥b,依次有3个三角形放置在上面,它们分别是等边三角形、等腰直角三角形、含30°角的直角三角形,直接填写出∠1、∠2、∠3 的度数.
∠1= °;∠2= °;∠3= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家,其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是( )
A.食堂离小明家2.4km
B.小明在图书馆呆了20min
C.小明从图书馆回家的平均速度是0.04km/min
D.图书馆在小明家和食堂之间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠xOy=90°,线段AB=10,若点A在Oy上滑动,点B随着线段AB在射线Ox上滑动(A,B与O不重合),Rt△AOB的内切圆☉K分别与OA,OB,AB切于点E,F,P.
(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.
(2)当AE=4时,求☉K的半径r.
(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).
(1)试说明点C在一次函数的图象上;
(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;
(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,ABAC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF∠A,另一边EF交AC于点F.
(1)求证:四边形ADEF为平行四边形;
(2)当D为AB中点时,四边形ADEF的形状为 (直接写出结论);
(3)延长图1中的DE到点G,使EGDE,连接AE,AG,FG,得到图2.若ADAG,判断四边形AEGF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.
(1)在如图所示的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司对一种新型产品的产销情况进行了营销调查,发现年产量为x(吨)时,所需的成本y(万元)与(x2+60x+800)成正比例,投入市场后当年能全部售出且发现每吨的售价p(单位:万元)由基础价与浮动价两部分组成,其中基础价是固定不变的,浮动价与x成正比例,比例系数为-.在营销中发现年产量为20吨时,所需的成本是240万元,并且年销售利润W(万元)的最大值为55万元.(注:年利润=年销售额-成本)
(1)求y(万元)与x(吨)之间满足的函数解析式;
(2)求年销售利润W与年产量x(吨)之间满足的函数解析式;
(3)当年销售利润最大时,每吨的售价是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com