精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中有为坐标原点,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点.

(1)求二次函数的解析式及顶点的坐标;

(2)过定点的直线与二次函数图象相交于两点.

①若,求的值;

②证明:无论为何值,恒为直角三角形;

③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.

【答案】(1),;(2)①;②见解析;③

【解析】

1)求出点ABC的坐标分别为(03)、(-10)、(30),即可求解;

2)①SPMN=PQ×x2-x1),则x2-x1=4,即可求解;②k1k2==-1,即可求解;③取MN的中点H,则点HPMN外接圆圆心,即可求解.

(1),则

即点的坐标分别为

则二次函数表达式为:

即:,解得:

故函数表达式为:

(2)将二次函数与直线的表达式联立并整理得:

设点的坐标为

则:

同理:

,当时,,即点

,则

解得:

②点的坐标为、点

则直线表达式中的值为:,直线表达式中的值为:

为:

即:恒为直角三角形;

③取的中点,则点外接圆圆心,

设点坐标为

整理得:

即:该抛物线的表达式为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线ab,依次有3个三角形放置在上面,它们分别是等边三角形、等腰直角三角形、含30°角的直角三角形,直接填写出∠1、∠2、∠3 的度数.

1= °;2= °;3= °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家,其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是(  )

A.食堂离小明家24km

B.小明在图书馆呆了20min

C.小明从图书馆回家的平均速度是004km/min

D.图书馆在小明家和食堂之间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知xOy=90°,线段AB=10,若点AOy上滑动B随着线段AB在射线Ox上滑动(A,BO不重合),RtAOB的内切圆K分别与OA,OB,AB切于点E,F,P.

(1)在上述变化过程中,RtAOB的周长K的半径AOB外接圆半径这几个量中不会发生变化的是什么?并简要说明理由.

(2)AE=4K的半径r.

(3)RtAOB的面积为S,AEx,试求Sx之间的函数关系并求出S最大时直角边OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,关于x的二次函数yax22axa0)的顶点为C,与x轴交于点OA,关于x的一次函数y=﹣axa0).

1)试说明点C在一次函数的图象上;

2)若两个点(ky1)、(k+2y2)(k≠0±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;

3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点Ey轴的平行线,与一次函数图象交于点F,当0a≤2时,求线段EF的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,ABAC,过AB上一点DDEACBC于点E,以E为顶点,ED为一边,作∠DEFA,另一边EFAC于点F

1)求证:四边形ADEF为平行四边形;

2)当DAB中点时,四边形ADEF的形状为 (直接写出结论);

3)延长图1中的DE到点G,使EGDE,连接AEAGFG,得到图2.若ADAG,判断四边形AEGF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.

(1)在如图所示的坐标系中求抛物线的解析式;

(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司对一种新型产品的产销情况进行了营销调查,发现年产量为x(吨)时,所需的成本y(万元)与(x2+60x+800)成正比例,投入市场后当年能全部售出且发现每吨的售价p(单位:万元)由基础价与浮动价两部分组成,其中基础价是固定不变的,浮动价与x成正比例,比例系数为-.在营销中发现年产量为20吨时,所需的成本是240万元,并且年销售利润W(万元)的最大值为55万元.(注:年利润=年销售额-成本)

(1)求y(万元)与x(吨)之间满足的函数解析式;

(2)求年销售利润W与年产量x(吨)之间满足的函数解析式;

(3)当年销售利润最大时,每吨的售价是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)x2﹣4x﹣3=0

(2)(x﹣3)2+2x(x﹣3)=0

(3)(x﹣1)2=4

(4)3x2+5(2x+3)=0.

查看答案和解析>>

同步练习册答案