精英家教网 > 初中数学 > 题目详情

【题目】如图,直线ab,依次有3个三角形放置在上面,它们分别是等边三角形、等腰直角三角形、含30°角的直角三角形,直接填写出∠1、∠2、∠3 的度数.

1= °;2= °;3= °.

【答案】202540.

【解析】

利用平行线的性质和外角的性质可计算出各角的度数。

解:如图1

ABC是等边三角形,

∴∠ABC=60°,

ab

∴∠D=AEF=40°,

∴∠BOD=ABC-D=20°,

∴∠1=BOD=20°,

如图2,∵ABC是等腰直角三角形,

∴∠A=45°,

ab

∴∠ADE=AFO=70°,

∴∠2=ADE-A=70°-45°=25°

如图3

ab

∴∠AED=AOF=180°-BOF=70°,

∵∠A =30°

∴∠AME=AED-A=40°

∴∠3=AME=40°

故答案为:202540.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料:,求m、n的值.

:

.

根据你的观察,探究下面的问题:

(1)己知,求的值.

(2)已知△ABC的三边长a、b、c都是正整数,且满足,求边c的最大值.

(3) 若己知的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边ABAC上,且AD=AE,连接BECD,交于点F.

(1)求证:∠ABE=∠ACD

(2)求证:过点AF的直线垂直平分线段BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用表示直角三角形的两直角边,下列四个说法:①;②;③;④;其中说法正确的是  

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量某风景区内一座塔AB的高度,某人分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°30°,已知楼高CD10m,求塔的高度。(结果精确到01m)(参考数据≈141≈173

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,ABC是等边三角形,如图①,点DE分别在射线BABC上,且AD=CE,求证:BDE是等边三角形;

2)如图②,点DBA边上,点E在射线BC上,AD=CE,连接DEAC于点F,请问DFEF的数量关系是什么?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C在y轴的正半轴上,点F再AB上,点B,E在反比例函数y=的图象上,OA=2,OC=6,则正方形ADEF的边长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在线段AB上取一点C(非中点),分别以ACBC为边在AB的同侧作等边ACD和等边BCE,连接AECD于点F,连接BDCE于点GAEBD交于点H.

1)求证:ACE≌△DCB

2)求∠BHE的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中有为坐标原点,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点.

(1)求二次函数的解析式及顶点的坐标;

(2)过定点的直线与二次函数图象相交于两点.

①若,求的值;

②证明:无论为何值,恒为直角三角形;

③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.

查看答案和解析>>

同步练习册答案