精英家教网 > 初中数学 > 题目详情

【题目】小明、小刚两兄弟的家离学校的距离是5km,一天,两兄弟同时从家里出发到学校,小刚以匀速跑步到学校;小明骑自行车出发,骑行一段路程后,因自行车故障,修车耽误了一些时间,然后以比出发时更快的速度赶往学校,结果比小刚早一点到了学校.下列能正确反映两人离家的距离y(千米)与时间t(时)之间的函数关系的图象是(

A.B.

C.D.

【答案】A

【解析】

根据题意和各个选项中函数图象可以判断哪个选项是正确的,本题得以解决.

由题意可知,小刚匀速从家去学校,

故小刚对应的函数图象是一条线段,故选项D错误;

小明骑自行车先行一段路程,中途出现故障需要维修,

然后以更快的速度赶往学校,比小刚早到一点到达学校,

故选项BC错误,选项A正确,

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   

(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D处,BCAD于点EAB=6cm,BC=8cm,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧的长度y与所挂物体的质量石的一组对应值:

所挂物体的质量x/kg

0

1

2

3

4

5

弹簧的长度y/cm

20

22

24

26

25

30

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)填空:

①当所挂的物体为3kg时,弹簧长是____.不挂重物时,弹簧长是____.

②当所挂物体的质量为8kg(在弹簧的弹性限度范围内)时,弹簧长度是___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A03)、B34)、C22)(正方形网格中每个小正方形的边长是一个单位长度).

1ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是

2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为21,点C2的坐标是 ;(画出图形)

3A2B2C2的面积是 平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.

(1)当t=5秒时,点P走过的路径长为_________;当t=_________秒时,点P与点E重合;

(2)当点P在AC边上运动时,连结PE,并过点E作AB的垂线,垂足为H. 若以C、P、E为顶点的三角形与△EFH相似,试求线段EH的值;

(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点Q.在运动过程中,若形成的四边形PEQF为菱形,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.

(1)求购进A、B两种纪念品每件各需多少元?

(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?

(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若正整数n使得在计算n+(n+1)+(n+2)的过程中,个数位上均不产生进为现象,则称n为本位数,例如2和30是本位数,而5和91不是本位数.现从所有大于0且小于100的本位数中,随机抽取一个数,抽到奇数的概率为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

同步练习册答案