精英家教网 > 初中数学 > 题目详情

【题目】在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧的长度y与所挂物体的质量石的一组对应值:

所挂物体的质量x/kg

0

1

2

3

4

5

弹簧的长度y/cm

20

22

24

26

25

30

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)填空:

①当所挂的物体为3kg时,弹簧长是____.不挂重物时,弹簧长是____.

②当所挂物体的质量为8kg(在弹簧的弹性限度范围内)时,弹簧长度是___.

【答案】(1)反映了弹簧长度与所挂物体质量之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量;(2)①26cm;20cm ; ②36cm

【解析】分析:1)根据表格可知反映了弹簧长度与所挂物体质量之间的关系

2)①根据表格即可找出答案

根据弹簧的长度等于弹簧原来的长度+弹簧伸长的长度列出关系式x=8代入求得y的值即可.

详解:(1反映了弹簧长度与所挂物体质量之间的关系,自变量是所挂物体的质量因变量是弹簧的长度

2)①根据表格可知当所挂物体重量为3千克时弹簧长度为26cm不挂重物时弹簧长度为20cm

根据表格可知所挂重物每增加1千克弹簧增长2cm根据弹簧的长度=弹簧原来的长度+弹簧伸长的长度可知当所挂物体的重量为x千克时弹簧长度y=2x+20x=8代入得y=2×8+20=36

即当所挂重物为8kg(在允许范围内)弹簧的长是36cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,∠C=90°,AC=8,FAB边上的中点,点D,E分别在AC、BC边上运动,且保持AD=CE,连接DE,DF,EF,在此运动过程中,下列结论:(1)DFE是等腰直角三角形;(2)DE长度的最小值为4;(3)四边形CDFE的面积保持不变;(4)CDE面积的最大值是4.正确的结论是(  )

A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (2)(3)(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重庆统景温泉风景区被喻为“巴渝十二景”.为丰富旅游配套资源,镇政府决定大力发动农户扩大柑橘和蔬菜种植面积,并取得了较好的经济效益.今年该镇柑橘和蔬菜的收成比去年增加了80吨,其中柑橘的收成比去年增加了20%,蔬菜的收成比去年增加了30%,从而使今年的收成共达到了420吨.

(1)统景镇去年柑橘和蔬菜的收成各是多少吨?

(2)由于今年大丰收,镇政府计划用甲、乙两种货车共33辆将柑橘和蔬菜一次性运去参加渝洽会.已知一辆甲种货车最多可装13吨柑橘和3吨蔬菜;一辆乙种货车最多可装柑橘5吨和蔬菜6吨,安排甲、乙两种货车共有几种方案?

(3)若甲种货车的运费为每辆600元,乙种货车的运费为每辆500元,在(2)的情况下,如何安排运费最少,最少为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则点C的坐标是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

(1)﹣6﹣8+5﹣(﹣2);

(2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);

(3)

(4)()×(﹣24);

(5)(﹣3.59)×()﹣2.41×()+6×();

(6)﹣23+|2﹣3|﹣2×(﹣1)2014

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格纸中,按下列要求画图:

(1)过点A作线段BC的平行线;

(2)将线段BCC点按逆时针方向旋转90°得线段EC

(3)画以BC为一边的正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,相距5kmA、B两地间有一条笔直的马路,C地位于AB两地之间且距A2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回。到达A地停止运动,设运动时间为t(小时).小明的位置为点P、若以点C为坐标原点,以从AB为正方向,用1个单位长度表示1km,解答下列各问:

(1)指出点A所表示的有理数;

(2)t =0.5时,点P表示的有理数;

(3)当小明距离C1km时,直接写出所有满足条件的t值;

(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);

(5)用含t的代数式表示点P表示的有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为

查看答案和解析>>

同步练习册答案