精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,点EF分别在边ABCD上,点GH在对角线AC上,AG=CHBE=DF

1)求证:四边形EGFH是平行四边形;

2)若EG=EHAB=8BC=4.求AE的长.

【答案】1)见解析;(2AE=5

【解析】

1)依据矩形的性质,即可得出AEG≌△CFH,进而得到GE=FH,∠CHF=AGE,由∠FHG=EGH,可得FHGE,即可得到四边形EGFH是平行四边形;

2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=xDF=8-x,依据RtADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.

1)∵矩形ABCD中,ABCD

∴∠FCH=EAG

又∵CD=ABBE=DF

CF=AE

又∵CH=AG

∴△AEG≌△CFH

GE=FH,∠CHF=AGE

∴∠FHG=EGH

FHGE

∴四边形EGFH是平行四边形;

2)如图,连接EFAF

EG=EH,四边形EGFH是平行四边形,

∴四边形GFHE为菱形,

EF垂直平分GH

又∵AG=CH

EF垂直平分AC

AF=CF=AE

AE=x,则FC=AF=xDF=8-x

RtADF中,AD2+DF2=AF2

42+8-x2=x2

解得x=5

AE=5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果店在两周内,将标价为10/斤的某种水果,经过两次降价后的价格为8.1/斤,并且两次降价的百分率相同.

(1)求该种水果每次降价的百分率;

(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1/斤,设销售该水果第x(天)的利润为y(元),求yx(1x15)之间的函数关系式,并求出第几天时销售利润最大?

时间x(天)

1x9

9x15

x15

售价(元/斤)

1次降价后的价格

2次降价后的价格

销量(斤)

80﹣3x

120﹣x

储存和损耗费用(元)

40+3x

3x2﹣64x+400

(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线y=﹣+bx+c过点A(3,0),B(0,2).Mm,0)为线段OA上一个动点(点M与点A不重合)过点M作垂直于x轴的直线与直线AB和抛物线分别交于点PN

(1)求直线AB的解析式和抛物线的解析式

(2)如果点PMN的中点那么求此时点N的坐标

(3)在对称轴的左侧是否存在点M使四边形OMPB的面积最大如果存在求点M的坐标不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ACBECD均为等腰直角三角形,∠ACB=ECD=90°.

(1)如图1,点EBC上,则线段AEBD有怎样的关系?请直接写出结论(不需证明);

(2)若将DCE绕点C旋转一定的角度得图2,则(1)中的结论是否仍然成立?请说明理由;

(3)当DCE旋转到使∠ADC=90°时,若AC=5,CD=3,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为C,对称轴为直线,且经过点A(3,-1),与y轴交于点B.

(1)求抛物线的解析式;

(2)判断ABC的形状,并说明理由;

(3)经过点A的直线交抛物线于点P,交x轴于点Q,若,试求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山的速度是  分钟,乙在地提速时距地面的高度  米;

(2)直接写出甲距地面高度(米(分之间的函数关系式;

(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+b与双曲线y=(k是常数,k0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.点Px轴.

(1)求直线和双曲线的解析式;

(2)若△BCP的面积等于2,求P点的坐标;

(3)求PA+PC的最短距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为给同学们创造更好的读书条件,学校准备新建一个长度为L的度数长廊,并准备用若干块带有花纹和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.6m

1)按图示规律,第一图案的长度L1= m;第二个图案的长度L2= m

2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln之间的关系.

3)当走廊的长度L36.6m时,请计算出所需带有花纹图案的瓷砖的块数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年4月23日是第23个“世界读书日”,也是江苏省第四个法定的全民阅读日。由市文明办、市全民阅读办、市文广新局等单位联合主办的“2018无锡市第三个全民阅读日”系列活动即将启动。某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:

(1)本次抽样调查的样本容量是

(2)请将条形统计图补充完整.

(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角是 度.

(4)根据本次抽样调查,试估计我市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.

查看答案和解析>>

同步练习册答案