精英家教网 > 初中数学 > 题目详情

【题目】定义:P、Q分别是两条线段a,b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离为;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为


(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,点D(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m值;若不存在,请说明理由.

【答案】
(1)2,
(2)解:如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:

当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;

当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,

ON=m,AN=OA﹣ON=4﹣m,在Rt△ABN中,由勾股定理得:

∴d= = =


(3)解:存在.

∵m≥0,n≥0,∴点M位于第一象限.

∵A(4,0),D(0,2),∴OA=2OD.

如答图4所示,相似三角形有三种情形:

(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.

如图,OH1=m+2,M1H1=2,AH1=OA﹣OH1=2﹣m,

由相似关系可知,M1H1=2AH1,即2=2(2﹣m),

∴m=1;

(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.

如图,OH2=m+2,M2H2=2,AH2=OH2﹣OA=m﹣2,

由相似关系可知,M2H2=2AH2,即2=2(m﹣2),

∴m=3;

(III)△AM3H3,此时点B落在⊙A上.

如图,OH3=m+2,AH3=OH3﹣OA=m﹣2,

过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m﹣4,

由相似关系可知,AH3=2M3H3,即m﹣2=2n (1)

在Rt△ABN中,由勾股定理得:22=(m﹣4)2+n2 (2)

由(1)、(2)式解得:m1= ,m2=2,

当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,

∴m=

综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1或3或


【解析】解:(1)当m=2,n=2时,

如题图1,线段BC与线段OA的距离(即线段BN的长)=2;

当m=5,n=2时,

B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,

如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,

在Rt△ABN中,由勾股定理得:AB= = =

所以答案是:2,

【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对点和圆的三种位置关系的理解,了解圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.

(1)求证:∠A+∠C=∠B+D;

(2)如图2,若∠CAB和∠BDC的平分线APDP相交于点P,且与CD、AB分别相交于点M、N.

以线段AC为边的“8字型”有   个,以点O为交点的“8字型”有   

若∠B=100°,∠C=120°,求∠P的度数;

若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P∠B、∠C之间存在的数量关系,并证明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

阅读理解:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用较大数与较小数的差来表示.例如:

在数轴上,有理数31对应的两点之间的距离为

在数轴上,有理数3与-2对应的两点之间的距离为

在数轴上,有理数-3与-2对应的两点之间的距离为.

解决问题:如图所示,已知点表示的数为-3,点表示的数为-1,点表示的数为2.

1)点和点之间的距离为______.

2)若数轴上动点表示的数为,当时,点和点之间的距离可表示为______;当时,点和点之间的距离可表示为______.

3)若数轴上动点表示的数为,点在点和点之间,点和点之间的距离表示为,点和点之间的距离表示为,求(用含的代数式表示并进行化简)

4)若数轴上动点表示的数为-2,将点向右移动19个单位长度,再向左移动23个单位长度终点为,那么两点之间的距离是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知长方形纸片ABCD,点E在边AB上,点FG在边CD上,连接EFEG.将∠BEG对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN

1)如图1,若点F与点G重合,求∠MEN的度数;

2)如图2,若点G在点F的右侧,且∠FEG30°,求∠MEN的度数;

3)若∠MENα,请直接用含α的式子表示∠FEG的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点B在线段AC上,点D在线段AB上.

1)如图1,若AB=6cmBC=4cmD为线段AC的中点,求线段DB的长度;

2)如图2,若BD=AB=CDE为线段AB的中点,EC=12cm,求线段AC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的解集在数轴上表示正确的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为

1)画出关于轴对称的,并写出点的坐标   

2)画出绕原点旋转后得到的,并写出点的坐标  

3是否为直角三角形?答   (填是或者不是).

4)利用格点图,画出边上的高,并求出的长,   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△A'B'C',点C的对应点是直线上的格点C'

(1)画出△A'B'C'

(2)BC上找一点P,使AP平分△ABC的面积;

(3)试在直线l上画出所有的格点Q,使得由点A'B'C'Q四点围成的四边形的面积为9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从热气球C上测得两建筑物A,B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A,D,B在同一直线上,求建筑物A,B间的距离.

查看答案和解析>>

同步练习册答案