精英家教网 > 初中数学 > 题目详情

【题目】综合与探究

阅读理解:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用较大数与较小数的差来表示.例如:

在数轴上,有理数31对应的两点之间的距离为

在数轴上,有理数3与-2对应的两点之间的距离为

在数轴上,有理数-3与-2对应的两点之间的距离为.

解决问题:如图所示,已知点表示的数为-3,点表示的数为-1,点表示的数为2.

1)点和点之间的距离为______.

2)若数轴上动点表示的数为,当时,点和点之间的距离可表示为______;当时,点和点之间的距离可表示为______.

3)若数轴上动点表示的数为,点在点和点之间,点和点之间的距离表示为,点和点之间的距离表示为,求(用含的代数式表示并进行化简)

4)若数轴上动点表示的数为-2,将点向右移动19个单位长度,再向左移动23个单位长度终点为,那么两点之间的距离是______.

【答案】15;(2 ;(312-x;(44

【解析】

1)用点C表示的数减去点A表示的数即可;

2)当时,用点P表示的数减去点B表示的数即可;当时,用点B表示的数减去点P表示的数即可;

3)先表示出PAPC,然后代入计算即可;

4)先求出点Q表示的数,然后根据两点间距离的求法计算即可.

解:(12--3=5

2x-(-1)=

3)∵PA=x-(-3)=x+3PC=2-x

4)∵-2+19-23=-6

两点之间的距离是-2--6=4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:

例:将化为分数形式,

由于,设

②①,解得,于是得.

同理可得,.

根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)

(类比应用)

(1)

(2)化为分数形式,写出推导过程;

(迁移提升)

(3) ;(注,

(拓展发现)

(4)若已知,则 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.

1)问需要维修的这批共享单车共有多少辆?

2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;

②由乙单独维修;

③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两同学用一副扑克牌中牌面数字分别是3,4,5,6的4张牌做抽数字游戏,游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,抽出的牌不放回,然后将剩下的牌洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请利用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知不等式组 的最小整数解为a,最大整数解为b,则ba=( )
A.
B.﹣8
C.
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,如果四边形ABCD满足ABADCBCD,∠B=∠D90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图1所示的“完美筝形”纸片ABCD先折叠成如图2所示形状,再展开得到图3,其中CECF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′FD′相交于点O.

简单应用:

(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是

(2)当图3中的∠BCD120°时,∠AEB′

拓展提升:

(3)当图2中的四边形AECF为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ADBC边上的高,AE是角平分线,∠B=30°,∠C=70°,求∠CAD和∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:P、Q分别是两条线段a,b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知,O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离为;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为


(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,点D(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1的一张纸条,按图,把这一纸条先沿折叠并压平,再沿折叠并压平,若图3,则图2的度数为(

A.B.C.D.

查看答案和解析>>

同步练习册答案