【题目】如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为_____.
【答案】
【解析】
设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y=,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.
解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),
把x=m代入y=x得:y=m,
则点A的坐标为:(m,m),线段AB的长度为m,点D的纵坐标为m,
∵点A在反比例函数y=上,
∴k=m2,
即反比例函数的解析式为:y=,
∵四边形ABCD为正方形,
∴四边形的边长为m,
点C,点D和点E的横坐标为m+m=m,
把x=m代入y=得:
y=m,
即点E的纵坐标为m,
则EC=m,DE=m﹣m=m,
∴
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的动点和图形,给出如下定义:如果为图形上一个动点,,两点间距离的最大值为,,两点间距离的最小值为,我们把的值叫点和图形间的“和距离”,记作(,图形).
(1)如图,正方形的中心为点,.
①点到线段的“和距离”(,线段)=______;
②设该正方形与轴交于点和,点在线段上,(,正方形)=7,求点的坐标.
(2)如图2,在(1)的条件下,过,两点作射线,连接,点是射线上的一个动点,如果(,线段),直接写出点横坐标取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位需采购一批商品,购买甲商品10件和乙商品15件需资金350元,而购买甲商品15件和乙商品10件需要资金375元.
求甲、乙商品每件各多少元?
本次计划采购甲、乙商品共30件,计划资金不超过460元,
最多可采购甲商品多少件?
若要求购买乙商品的数量不超过甲商品数量的,请给出所有购买方案,并求出该单位购买这批商品最少要用多少资金.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象经过点C(0,-2),顶点D的坐标为(1,),与轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.
(3)点F(0,)是轴上一动点,当为何值时,的值最小.并求出这个最小值.
(4)点C关于轴的对称点为H,当取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD为⊙O的直径,AB,AC为弦,且∠ADC=∠DAB+∠ACD,AB交CD于E点.
(1)求证:AB=AC.
(2)DF为切线,若DE=2,CE=10,求cos∠ADF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.
(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只;
(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或树状图计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
A.48B.36C.24D.18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com