精英家教网 > 初中数学 > 题目详情

【题目】如图,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在边AB上取点D,在CA的延长线上取点E,使ACCE+ABBD=BC2

求证:(1)∠CEB>∠ABC;

(2)BE=2CD.

【答案】(1)详见解析;(2)详见解析.

【解析】

(1)延长CEF,使EF=2BD,由∠ACB=∠CAB+30°=∠ABC+60°,可得∠ACB=90°,又ACCE+ABBD=BC2,等量代换可得AC(CE+2BD)=BC2,即 ,则△ABC∽△BFC,∠ABC=∠F,根据三角形外角的性质,即可证得;(2)∠F=30°,则BF=2BC,易证△EFB∽△DBC,即可证得BE=2CD.

证明:(1)延长CEF,使EF=2BD,

∵在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,

∴∠ACB=90°,∠ABC=30°,∠CAB=60°,

∴AB=2AC,

∵ACCE+ABBD=BC2

∴AC(CE+2BD)=BC2

∴AC×CF=BC2

∴△ABC∽△BFC,

∴∠ABC=∠F=30°,

∵∠CEB>∠F,

∴∠CEB>∠ABC;

(2)∵∠F=30°,∠FCB=90°,

∴FB=2BC,又∠F=∠CBD,EF=2BD,

∴△EFB∽△DBC,

∴BE=2CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△BAC中,∠B∠C的平分线相交于点F,过点FDE∥BCAB于点D,交AC于点E,若BD=5,CE=4,则线段DE的长为(  )

A. 9 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtA'BC'是由RtABCB点顺时针旋转而得,且点A,B,C'在同一条直线上,在RtABC中,若∠C=90°,BC=2,AB=4,则RtABC旋转到RtA'BC'所扫过的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17121520170726179

1)这组数据的中位数是   ,众数是   

2)计算这10位居民一周内使用共享单车的平均次数;

3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,等腰△ABCABAC,∠BAC120°,ADBC于点D,点PBA延长线上一点,点O是线段AD上一点,OPOC,下列结论:①AC平分∠PADAPO=∠DCOOPC是等边三角形;④ACAO+AP;其中正确的序号是(  )

A.①③④B.②③C.①②④D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线ACBD交于点OAG平分∠BACBDGDEAG于点H.下列结论:①AD2AE:②FDAG;③CFCD:④四边形FGEA是菱形;⑤OFBE,正确的有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣2k﹣1x+k2=0有两个实数根x1x2

1)求k的取值范围;

2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一天晚上,小丽帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),在清洗过程中,突然停电了,小丽只好摸黑清洗(在摸黑清洗中,能分清杯盖与茶杯)

(1)小丽摸黑清洗过程中,在三个茶杯中他随手拿起两个,则这两个都属于有杯盖的茶杯的概率是多少?

(2)小丽摸黑清洗完茶杯和杯盖后,只好把杯盖与茶杯随机地搭配在一起,则花色搭配完全正确的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用指定方法解下列一元二次方程.

1x2360(直接开平方法)

2x24x2(配方法)

32x25x+10(公式法)

4)(x+12+8x+1+160(因式分解法)

查看答案和解析>>

同步练习册答案