【题目】如图,Rt△A'BC'是由Rt△ABC绕B点顺时针旋转而得,且点A,B,C'在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则Rt△ABC旋转到Rt△A'BC'所扫过的面积为________.
【答案】π+2
【解析】
先利用勾股定理计算出AC=2,再利用三角函数得到∠ABC=60°,接着根据旋转的性质得到∠A′B′C′=∠ABC=60°,△ABC≌△A′B′C′,所以∠ABA′=120°,
然后根据扇形面积公式,利用Rt△ABC旋转到Rt△A'BC'所扫过的面积=S扇形ABA′+S△A′B′C′进行计算即可.
∵∠C=90°,BC=2,AB=4,
∴AC==2,
∵tan∠ABC==,
∴∠ABC=60°,
∵Rt△A'BC'是由Rt△ABC绕B点顺时针旋转而得,且点A,B,C'在同一条直线上,
∴∠A′B′C′=∠ABC=60°,△ABC≌△A′B′C′,
∴∠ABA′=120°,
∴Rt△ABC旋转到Rt△A'BC'所扫过的面积=S扇形ABA′+S△A′B′C′
=.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为10,求线段AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(0,4a),B(3a,0),△AOB的面积是150.
(1)求点A的坐标;
(2)点P是射线AB上的一点,点P的横坐标为t,连接PO,若△PBO的面积为S,试用含有t的式子表示S.
(3)在(2)的条件下,若点P在第一象限内,且S△PBO=126,过P作PE⊥AB,交y轴于点D,交x轴于点E,且OB=OD,连接AE,M为AE上一点,连接OM交PE于点N,若∠EMN+∠ABE=180°,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的内接四边形中,,,点在上.
(1)求的度数;
(2)若的半径为,则的长为多少?
(3)连接,,当时,恰好是的内接正边形的一边,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形我们就能证明勾股定理: .
(请回答)如图是任意符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△BCE中,∠ACB=∠CAB+30°=∠ABC+60°,在边AB上取点D,在CA的延长线上取点E,使ACCE+ABBD=BC2
求证:(1)∠CEB>∠ABC;
(2)BE=2CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,点E、F、G分别为边AB、BC、CD的中点,若△EFG的面积为4,则四边形ABCD的面积为( )
A. 8 B. 12 C. 16 D. 18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com