【题目】据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:
例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+(352010)×4.8=80(元)
(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费___元;
(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?
(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)
【答案】(1)16;(2)25吨;(3)4.8a88元.
【解析】
(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;
(2)判断得7月份用水量在20吨-30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;
(3)根据a的范围,按照第3级收费方式,计算即可得到结果.
(1)∵10<20,
∴该月需缴水费为10×1.6=16(元);
故答案为:16;
(2).∵20×1.6=32(元)、20×1.6+10×2.4=56(元)
∵32<44<56
∴小明家2016年7月份缴交水费属于第二级
设小明家2016年7月份的用水量为x吨,根据题意,得:
20×1.6+2.4(x20)=44
解得:x=25
答:小明家2016年7月份的用水量为25吨;
(3).当0a20时,该月应缴交水费为1.6a元;
当20a30时,该月应缴交水费为1.6×20+2.4(a20)=2.4a16元;
当a30时,该月应缴交水费为1.6×20+2.4×10+4.8(a30)=4.8a88元.
科目:初中数学 来源: 题型:
【题目】如图1,若顺次连接四边形ABCD各边中点得的四边形EFGH是矩形,则称原四边形ABCD为“中母矩形”即若四边形的对角线互相垂直,那么这个四边形称为“中母矩形”.
(1)如图2,在直角坐标系xOy中,已知A(4,0),B(1,4),C(4,6),请在格点上标出D点的位置(只标一点即可),使四边形ABCD是中母矩形.并写出点D的坐标.
(2)如图3,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于点O,试判断四边形BEGC是中母矩形?说明理由.
(3)如图4,在Rt△ABC中,AB=8,BC=6,E是斜边AC的中点,F是直角边AB的中点,P是直角边BC上一动点,试探究:当PC=_____时,四边形BPEF是中母矩形?(直角三角形中,30°角所对的直角边是斜边的一半)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点
(1)点B表示的数为____________
(2)若线段BM的长为4.5,则线段AC的长为___________
(3)若线段AC的长为x,求线段BM的长(用含x的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABD中,AB=AD=1,∠B=30°,△ABD绕着A点逆时针α(0°<α<120°)旋转得到△ACE.CE与AD、BD分别交于点G、F;AD、CE交于点G,设DF+GF=x,△AEG的面积为y,则y关于x的函数解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平整的地面上,用若干个完全相同的棱长为10 cm的小正方体堆成一个几何体.
(1)现已给出这个几何体的俯视图(如图②),请你画出这个几何体的主视图与左视图;
(2)若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变.
①在图①所示的几何体中最多可以再添加几个小正方体?
②在图①所示的几何体中最多可以拿走几个小正方体?
③在②的情况下,把这个几何体放置在墙角,如图③所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在数轴上点A表示的有理数为-6,点B表示的有理数为4,点P从点A出发,以每秒2个单位长度的速度在数轴上向点B运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止.设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,直接写出所有满足条件的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.
(1)直接写出当和时,与的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时张用A方法,其余用B方法。
(1)用的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com