【题目】下面是小明在一次测验中解答的填空题:①若x2 =1,则x=1; ②方程x(x-1)=x-1的解是x=2;③已知三角形两边分别为2和9,第三边长是方程x 2-14x+48=0的根,则这个三角形的周长是17或19;④方程的解是x=3,试卷中每个填空题5分,最后小明填空题的得分是( ).
A.0分B.5分C.10分D.15分
【答案】A
【解析】
①开方得到x=1或x=-1,本选项错误;②将方程右边式子整体移项到左边,提取公因式x-1,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解,即可作出判断;③求出方程x 2-14x+48=0的解,得到第三边的长,求出三角形周长即可作出判断;④将方程两边都乘x+1,即可得到二元一次方程,求得方程的解再检验即可.
①若x2 =1,则x=±1,故错误;
②方程x(x-1)=x-1,
移项得:x(x1)(x1)=0,即(x1)( x1)=0,
可得x1=0或x1=0,
解得:,故错误;
③x 2-14x+48=0,
因式分解得:(x6)(x8)=0,
可得x6=0或x8=0,
解得:,
∴第三边分别为6或8,
若第三边为6,三边长分别为2,6,9,不能构成三角形,舍去;
若第三边为8,三边长为2,8,9,此时周长为2+8+9=19
则这个三角形的周长是19,故错误;
④,等式两边均乘x+1,
得,
因式分解得:(x3)(x4)=0,
解得:
经检验均为方程的解,故错误;
则答案完全正确的数目为0个,
故选A
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.
(1)求c的值及a,b满足的关系式;
(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;
(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).
①若m=n,求a的值;
②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一位旅行者骑自行车沿湖边正东方向笔直的公路BC行驶,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min后到达C地,测得建筑物A在北偏西60°方向如果此旅行者的速度为10km/h,求建筑物A到公路BC的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A,B两点,且点A的横坐标是3.
(1)求k的值;
(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y= (k≠0)交于点N,若点M在N右边,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个函数,当自变量取时,函数值等于,我们称为这个函数的“二合点”.如果二次函数有两个相异的二合点,,且,则的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(思考题)
阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形;
小明:那直角三角形是否存在奇异三角形呢?
(1)①根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,请判断小红提出的命题是否正确,并填空:命题 (填“正确”或“不正确”),不要说嘛理由.
②若某三角形的三边长分别是2、4、,则△ABC是奇异三角形吗? (填“是”或“不是”),不要说嘛理由.
(2)在Rt△ABC中,两边长分别是a=5、c=10,这个三角形是否是奇异三角形?请说明理由.
(3)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;
(2)△ABC绕着点B逆时针旋转90°,画出旋转后对应的△A2BC2,并写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=﹣x2向左平移3个单位,再向上平移4个单位.
(1)写出平移后的抛物线的函数关系式.
(2)若平移后的抛物线的顶点为A,与x轴的两个交点分别是B、C,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=α,点D在边AC上(不与点A,C重合)连接BD,点K为线段BD的中点,过点D作DE⊥AB于点E,连结CK,EK,CE,将△ADE绕点A顺时针旋转一定的角度(旋转角小于90°)
(1)如图1,若α=45°,则△ECK的形状为______;
(2)在(1)的条件下,若将图1中的△ADE绕点A旋转,使得D,E,B三点共线,点K为线段BD的中点,如图2所示,求证:BE-AE=2CK;
(3)若△ADE绕点A旋转至图3位置时,使得D,E,B三点共线,点K仍为线段BD的中点,请你直接写出BE,AE,CK三者之间的数量关系(用含α的三角函数表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com