精英家教网 > 初中数学 > 题目详情

【题目】已知图,正方形ABCD,M是BC延长线上一点,过B作BE⊥DM于点E,交DC于点F,过F作FG∥BC交BD于点G,连接GM,若SEFD= DF2 , AB=4 ,则GM=

【答案】8( ﹣1)
【解析】解:如图,作EH⊥CD于H,CN⊥DM于N,NK⊥CD于K.

∵四边形ABCD是正方形,

∴∠BCF=∠DCM=90°,BC=DC,

∵BE⊥DM,

∴∠BEM=90°,

∴∠CBF+∠BME=90°,∠BME+∠CDM=90°,

∴∠CBF=∠CDM,

∴△BCF≌△DCM,

∴BF=DM,CF=CM,

∴∠FMB=∠GBM=45°,

∵FG∥BM,

∴四边形BMFG是等腰梯形,

∴GM=BF=DM,

∵SDEF= DFEH= DF2

∴EH= DF,即DF=4EH,

∵△DEF∽△DNC∽△DCM,

∴CD=4NK,DM=4CN,

∵AB=CD=4

∴NK= ,设CK=x,则DK=4 ﹣x,

∵△DKN∽△NKC,

∴NK2=DKKC,

∴2=x(4 ﹣x),

∴x=2 或2 + (舍弃),

在Rt△CKN中,CN= = =2( ﹣1),

∴GM=DM=4CN=8( ﹣1).

所以答案是8( ﹣1).

【考点精析】掌握三角形的面积和勾股定理的概念是解答本题的根本,需要知道三角形的面积=1/2×底×高;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠A=AGE,D=DGC.

(1)试说明ABCD;

(2)若∠1+2=180°,且∠BEC=2B+60°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知NG平分∠BNF,∠AMD=MNF,∠CMN:∠DMN=35,试求∠MNF和∠GNF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a≠0,函数y= 与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法

解:∵x﹣y=2,∴x=y+2 又∵x>1∴y+2>1∴y>﹣1

∵y<0∴﹣1<y<0…①

同理可得1<x<2…②

①+②得:﹣1+1<x+y<0+2∴x+y的取值范围是0<x+y<2

按照上述方法,完成下列问题:

(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是   

(2)已知关于x,y的方程组的解都是正数

求a的取值范围;若a﹣b=4,求a+b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点,试分别根据下列条件,求出点的坐标.

1)点轴上;

2)点的横坐标比纵坐标大2

3)点在过,且与轴平行的直线上.

4)点在到两个坐标轴的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点三点.

1)在平面直角坐标中画出,求的面积

2)在轴上是否存在一点使得的面积等于的面积?若存在,求出点坐标;若不存在,说明理由.

3)如果在第二象限内有一点,用含的式子表示四边形的面积;

4)且四边形的面积是的面积的三倍,是否存在点,若存在,求出满足条件的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,a,b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是( )

A.骑车的同学比步行的同学晚出发30分钟
B.步行的速度是6千米/小时
C.骑车的同学从出发到追上步行的同学用了20分钟
D.骑车的同学和步行的同学同时到达目的地

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O为直线AB上的一点,CDAB于点OPOOE于点OOM平分∠COE,点FOE的反向延长线上.

(1)OP在∠BOC内,OE在∠BOD内时,如图①所示,直接写出∠POM和∠COF之间的数量关系;

(2)OP在∠AOC内且OE在∠BOC内时,如图②所示,试问(1)中∠POM和∠COF之间的数量关系是否发生变化?并说明理由.

查看答案和解析>>

同步练习册答案