精英家教网 > 初中数学 > 题目详情

【题目】已知ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G为切点,已知⊙O的半径为.求ABCD的面积.

【答案】20

【解析】

首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.

⊙O分别切△ABD的边AD、AB、BD于点G、E、F;

平行四边形ABCD的面积为S;

S=2SABD=2×(AB·OE+BD·OF+AD·OG)=(AB+AD+BD);

平行四边形ABCD的周长为26,

∴AB+AD=13,

∴S=(13+BD);连接OA;

由题意得:∠OAE=30°,

∴AG=AE=3;同理可证DF=DG,BF=BE;

∴DF+BF=DG+BE=13﹣3﹣3=7,

BD=7,

∴S=(13+7)=20

即平行四边形ABCD的面积为20

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某通讯公司推出①②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x()与费用y()之间的函数关系如图所示.

(1)有月租的收费方式是________(”),月租费是________元;

(2)分别求出①②两种收费方式中y与自变量x之间的函数表达式;

(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,DE分别在BCAC上,且CD=AEADBE相交于PBQADQ.

1)求证:

2)若PQ=4PE=1,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA),B(0,yB),C(﹣1,yC)在该抛物线上,当y0≥0恒成立时,的最小值为(  )

A. 1 B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,DAB=ABC=90°,AB=BC,E是AB的中点,CEBD

(1)求证:BE=AD;

(2)求证:AC是线段ED的垂直平分线;

(3)DBC是等腰三角形吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一条24cm的细绳围成一个等腰三角形。

1)如果腰长是底边的2倍,那么各边的长是多少?

2)能围成有一边长为4cm的等腰三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE

(1)求证:△ABC≌△CDE

(2)试判断AC与CE的位置关系,并说明理由.

(3)若将CD沿CB方向平移得到图②的情形,其余条件不变,此时第(2)问中AC与CE的位置关系还成立吗?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为8ADBC边上的中线,点EAC边上的一点,AE=2,若点M是线段AD上的一个动点,则ME+MC的最小值为____.

查看答案和解析>>

同步练习册答案