【题目】已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA),B(0,yB),C(﹣1,yC)在该抛物线上,当y0≥0恒成立时,的最小值为( )
A. 1 B. 2 C. 4 D. 3
【答案】D
【解析】
主要是要是通过相似三角形边的对应关系,构造所求的式子,并对结果找到限制条件即可
由0<2a<b,得x0=﹣<﹣1,
由题意,如图,过点A作AA1⊥x轴于点A1,
则AA1=yA,OA1=1,
连接BC,过点C作CD⊥y轴于点D,则BD=yB﹣yC,CD=1,
过点A作AF∥BC,交抛物线于点E(x1,yE),交x轴于点F(x2,0),
则∠FAA1=∠CBD,
于是Rt△AFA1∽Rt△BCD,
所以=,即=,
过点E作EG⊥AA1于点G,
易得△AEG∽△BCD.
有=,即=,
∵点A(1,yA)、B(0,yB)、C(﹣1,yC)、E(x1,yE)在抛物线y=ax2+bx+c上,
得yA=a+b+c,yB=c,yC=a﹣b+c,yE=ax12+bx1+c,
∴==1﹣x1,
化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),
∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,
则1﹣x2≥1﹣x1,即1﹣x2≥3,
∴≥3,
∴的最小值为3.
故选D.
科目:初中数学 来源: 题型:
【题目】我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,分别在AB的右侧、AC的左侧作等边△ABE和等边△ACD,BE与CD相交于点F,连接BD,若BD=BF,则∠BDF为__________度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF, BE=7.5, CF=6,则EF=( ).
A.2.5B.2C.1.5D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.求证:
(1)AB∥CD;
(2)点M是线段EF的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.
(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com