精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA),B(0,yB),C(﹣1,yC)在该抛物线上,当y0≥0恒成立时,的最小值为(  )

A. 1 B. 2 C. 4 D. 3

【答案】D

【解析】

主要是要是通过相似三角形边的对应关系,构造所求的式子,并对结果找到限制条件即可

0<2a<b,得x0=﹣<﹣1,

由题意,如图,过点AAA1⊥x轴于点A1

AA1=yA,OA1=1,

连接BC,过点CCD⊥y轴于点D,则BD=yB﹣yC,CD=1,

过点AAF∥BC,交抛物线于点E(x1,yE),交x轴于点F(x2,0),

∠FAA1=∠CBD,

于是Rt△AFA1∽Rt△BCD,

所以=,即=

过点EEG⊥AA1于点G,

易得△AEG∽△BCD.

=,即=

A(1,yA)、B(0,yB)、C(﹣1,yC)、E(x1,yE)在抛物线y=ax2+bx+c上,

yA=a+b+c,yB=c,yC=a﹣b+c,yE=ax12+bx1+c,

==1﹣x1

化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),

∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,

1﹣x2≥1﹣x1,即1﹣x2≥3,

≥3,

的最小值为3.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们定义:如图1,在ABC看,把ABA顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称A'B'C'ABC旋补三角形”,AB'C'B'C'上的中线AD叫做ABC旋补中线,点A叫做旋补中心”.

特例感知:

(1)在图2,图3中,AB'C'ABC旋补三角形”,ADABC旋补中线”.

①如图2,当ABC为等边三角形时,ADBC的数量关系为AD=   BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为   

猜想论证:

(2)在图1中,当ABC为任意三角形时,猜想ADBC的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BDABC的角平分线,且BD=BCEBD延长线上的一点,BE=BA,过EEFABF为垂足.下列结论:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是(   )

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,ABAC,分别在AB的右侧、AC的左侧作等边ABE和等边ACDBECD相交于点F,连接BD,若BD=BF,BDF__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在等腰Rt△ABCBAC=90°EAC上(且不与点AC重合.在ABC的外部作等腰Rt△CED使CED=90°连接AD分别以ABAD为邻边作平行四边形ABFD连接AF

1求证AEF是等腰直角三角形

2如图2CED绕点C逆时针旋转当点E在线段BC上时连接AE求证AF=AE

3如图3CED绕点C继续逆时针旋转当平行四边形ABFD为菱形CEDABC的下方时AB=2CE=2求线段AE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD的中线,EAD上一点,连接BE并延长交AC于点F,若EF=AF BE=7.5 CF=6,则EF=( ).

A.2.5B.2C.1.5D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G为切点,已知⊙O的半径为.求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF分别为线段AC上的两个点,且DEAC于点EBFAC于点F,若ABCDAECFBDAC于点M.求证:

1ABCD

2)点M是线段EF的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EFBCABACEF.

(1)图①中有几个等腰三角形?猜想:EFBECF之间有怎样的关系.

(2)如图②,ABAC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EFBECF间的关系还存在吗?

(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OEBCABE,交ACF.这时图中还有等腰三角形吗?EFBECF关系又如何?说明你的理由.

查看答案和解析>>

同步练习册答案