【题目】解下列方程
.
【答案】 ,; ,; ; ,.
【解析】
(1)方程变形后,开方即可求出解;
(2)方程整理后,利用因式分解法求出解即可;
(3)方程整理后,利用公式法求出解即可;
(4)方程整理后,利用因式分解法求出解即可.
(1)方程变形得:(x+1)2=3,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣;
(2)方程变形得:(x﹣5)2+(x﹣5)=0,分解因式得:(x﹣5)(x﹣5+1)=0,解得:x1=5,x2=4;
(3)方程整理得:x2﹣6x+7=0,这里a=1,b=﹣6,c=7.
∵△=36﹣28=8,∴x==3±;
(4)方程整理得:2x2+5x﹣7=0,分解因式得:(2x+7)(x﹣1)=0,解得:x1=﹣3.5,x2=1.
科目:初中数学 来源: 题型:
【题目】如图,中,平分交于点,在上截取,过点作交于点.求证:四边形是菱形;
如图,中,平分的外角交的延长线于点,在的延长线上截取,过点作交的延长线于点.四边形还是菱形吗?如果是,请证明;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,动点、分别以、的速度从点、同时出发,点从点向点移动.
若点从点移动到点停止,点随点的停止而停止移动,点、分别从点、同时出发,问经过多长时间、两点之间的距离是?
若点沿着移动,点、分别从点、同时出发,点从点移动到点停止时,点随点的停止而停止移动,试探求经过多长时间的面积为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图钢架中,∠A=,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )
A.15°≤ a <18°
B.15°< a ≤18°
C.18°≤ a <22.5°
D.18° < a ≤ 22.5°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器超市销售A B两种型号的电风扇,A型号每台进价为200元,B型号每台进价分别为150元,下表是近两天的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一天 | 3台 | 5台 | 1620元 |
第二天 | 4台 | 10台 | 2760元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下文字并解决问题:对于形如这样的二次三项式,我们可以直接用公式法把它分解成的形式,但对于二次三项式,就不能直接用公式法分解了.此时,我们可以在中间先加上一项,使它与的和构成一个完全平方式,然后再减去,则整个多项式的值不变.即:,像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.
利用“配方法”因式分解:
如果,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在□ABCD中,,,,射线AE平分动点P以的速度沿AD向终点D运动,过点P作交AE于点Q,过点P作,过点Q作,交PM于点设点P的运动时间为,四边形APMQ与四边形ABCD重叠部分面积为
______用含t的代数式表示
当点M落在CD上时,求t的值.
求S与t之间的函数关系式.
如图2,连结AM,交PQ于点G,连结AC、BD交于点H,直接写出t为何值时,GH与三角形ABD的一边平行或共线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,在平面直角坐标系中,点M是二次函数图象上一点,过点M作轴,如果二次函数的图象与关于l成轴对称,则称是关于点M的伴随函数如图2,在平面直角坐标系中,二次函数的函数表达式是,点M是二次函数图象上一点,且点M的横坐标为m,二次函数是关于点M的伴随函数.
若,
求的函数表达式.
点,在二次函数的图象上,若,a的取值范围为______.
过点M作轴,
如果,线段MN与的图象交于点P,且MP::3,求m的值.
如图3,二次函数的图象在MN上方的部分记为,剩余的部分沿MN翻折得到,由和所组成的图象记为.以、为顶点在x轴上方作正方形直接写出正方形ABCD与G有三个公共点时m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com