【题目】如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.
(1)求证:△ABC是等腰三角形;
(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.
【答案】(1)证明见解析;(2)70°
【解析】
(1)根据AF平分∠DAC得出∠DAF=∠CAF,再根据AF∥BC求得∠DAF=∠B,∠CAF=∠ACB则可证明△ABC是等腰三角形;(2)根据AB=AC,∠B=40°,可求出∠ACE的角度,再根据CG平分∠ACE求出,则利用AF∥BC求出∠AGC的度数.
(1)证明:∵AF平分∠DAC,
∴∠DAF=∠CAF,
∵AF∥BC,
∴∠DAF=∠B,∠CAF=∠ACB,
∴∠B=∠ACB,
∴△ABC是等腰三角形;
(2)解:∵AB=AC,∠B=40°,
∴∠ACB=∠B=40°,
∴∠BAC=100°,
∴∠ACE=∠BAC+∠B=140°,
∵CG平分∠ACE,
∴ACE=70°,
∵AF∥BC,
∴∠AGC=180°﹣∠BCG=70°.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2x﹣3
(1)请你把已知的二次函数化成y=(x﹣h)2+k的形式,并在平面直角坐标系中画出它的图象;
(2)如果A(x1,y1)、B(x2,y2)是(1)中像上的两点,且x1<x2<1,请直接写出y1、y2的大小关系为 .
(3)利用(1)中的图象表示出方程x2﹣2x﹣1=0的根,画在(1)的图象上即可,要求保留画图痕迹.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知港口位于观测点北偏东方向,且其到观测点正北方向的距离的长为,一艘货轮从港口以的速度沿如图所示的方向航行,后达到处,现测得处位于观测点北偏东方向,求此时货轮与观测点之间的距离的长(精确到).(参考数据:,,,,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为的直径延长线上的一点,与相切,切点为,点是上一点,连接.已知.下列结论:
与相切;四边形是菱形;;.
其中正确的个数为( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,∠A=96°,延长BC到D,∠ABC的平分线与∠ACD的平分线交于点A,∠ABC的平分线与∠ACD的平分线交于点A,以此类推,∠ABC的平分线与∠ACD的平分线交于点A,则∠A的大小是___
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形置于平面直角坐标系中,点的坐标为,点在轴上,点在上,将矩形沿折叠压平,使点落在坐标平面内,设点的对应点为点.若抛物线(且为常数)的顶点落在的内部,则的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,中,,,.
点从点开始沿边向以的速度移动,点从点开始沿边向点以的速度移动.如果、分别从,同时出发,线段能否将分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
若点沿射线方向从点出发以的速度移动,点沿射线方向从点出发以的速度移动,、同时出发,问几秒后,的面积为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:
(1)在爬行过程中,BD和AP始终相等吗?
(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com