【题目】如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.
![]()
(1)求证:△ABC是等腰三角形;
(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.
【答案】(1)证明见解析;(2)70°
【解析】
(1)根据AF平分∠DAC得出∠DAF=∠CAF,再根据AF∥BC求得∠DAF=∠B,∠CAF=∠ACB则可证明△ABC是等腰三角形;(2)根据AB=AC,∠B=40°,可求出∠ACE的角度,再根据CG平分∠ACE求出
,则利用AF∥BC求出∠AGC的度数.
(1)证明:∵AF平分∠DAC,
∴∠DAF=∠CAF,
∵AF∥BC,
∴∠DAF=∠B,∠CAF=∠ACB,
∴∠B=∠ACB,
∴△ABC是等腰三角形;
(2)解:∵AB=AC,∠B=40°,
∴∠ACB=∠B=40°,
∴∠BAC=100°,
∴∠ACE=∠BAC+∠B=140°,
∵CG平分∠ACE,
∴
ACE=70°,
∵AF∥BC,
∴∠AGC=180°﹣∠BCG=70°.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2x﹣3
(1)请你把已知的二次函数化成y=(x﹣h)2+k的形式,并在平面直角坐标系中画出它的图象;
(2)如果A(x1,y1)、B(x2,y2)是(1)中像上的两点,且x1<x2<1,请直接写出y1、y2的大小关系为 .
(3)利用(1)中的图象表示出方程x2﹣2x﹣1=0的根,画在(1)的图象上即可,要求保留画图痕迹.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(
,1)在射线OM上,点B(
,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为_______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知
港口位于
观测点北偏东
方向,且其到
观测点正北方向的距离
的长为
,一艘货轮从
港口以
的速度沿如图所示的
方向航行,
后达到
处,现测得
处位于
观测点北偏东
方向,求此时货轮与
观测点之间的距离
的长(精确到
).(参考数据:
,
,
,
,
,
,
)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
为
的直径
延长线上的一点,
与
相切,切点为
,点
是
上一点,连接
.已知
.下列结论:
与
相切;
四边形
是菱形;
;
.
其中正确的个数为( )
![]()
A.
个 B.
个 C.
个 D.
个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,∠A=96°,延长BC到D,∠ABC的平分线与∠ACD的平分线交于点A
,∠A
BC的平分线与∠A
CD的平分线交于点A
,以此类推,∠A
BC的平分线与∠A
CD的平分线交于点A
,则∠A
的大小是___
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形
置于平面直角坐标系中,点
的坐标为
,点
在
轴上,点
在
上,将矩形
沿
折叠压平,使点
落在坐标平面内,设点
的对应点为点
.若抛物线
(
且
为常数)的顶点落在
的内部,则
的取值范围是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,
中,
,
,
.
![]()
点
从点
开始沿
边向
以
的速度移动,点
从
点开始沿
边向点
以
的速度移动.如果
、
分别从
,
同时出发,线段
能否将
分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
若
点沿射线
方向从
点出发以
的速度移动,点
沿射线
方向从
点出发以
的速度移动,
、
同时出发,问几秒后,
的面积为
?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:
(1)在爬行过程中,BD和AP始终相等吗?
(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com