精英家教网 > 初中数学 > 题目详情

【题目】如图,AB∥DE,AB=DE,BF=EC.

(1)求证:AC∥DF;
(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.

【答案】
(1)

证明:∵AB∥DE,

∴∠B=∠E,

∵BF=CE,

∴BF﹣FC=CE﹣FC,

即BC=EF,

∵在△ABC和△DEF中,

∴△ABC≌△DEF(SAS),

∴∠ACB=∠DFE,

∴∠ACF=∠DFC,

∴AC∥DF;


(2)

解:△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.


【解析】(1)首先利用“SAS”证得△ABC≌△DEF,得出∠ACB=∠DFE,推出∠ACF=∠DFC,证得结论即可;
(2)根据平移和旋转描述图形变换过程即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.

(1)求证:CD是⊙O的切线.
(2)若,求∠E的度数.
(3)连接AD,在2的条件下,若CD=,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为(  )
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.

(1)则点A,B,C的坐标分别是A( ,  ),B( ,  ),C(  ,  );
(2)设经过A,B两点的抛物线解析式为y=(x﹣5)2+k,它的顶点为E,求证:直线EA与⊙M相切;
(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1 , P2 , P3 , …,Pn﹣1 , 过每个分点作x轴的垂线分别交直线AB于点T1 , T2 , T3 , …,Tn﹣1 , 用S1 , S2 , S3 , …,Sn﹣1分别表示Rt△T1OP1 , Rt△T2P1P2 , …,Rt△Tn﹣1Pn﹣2Pn﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2 , 再依次连接△A2B2C2的三边中点得△A3B3C3 , …,则△A5B5C5的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=x2+x+c经过点E,且与AB边相交于点F.

(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.

(1)若∠E=∠F时,求证:∠ADC=∠ABC;
(2)(2)若∠E=∠F=42°时,求∠A的度数
(3)(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.

(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?
(2)求一次函数解析式及m的值;
(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.

查看答案和解析>>

同步练习册答案