【题目】如图,已知△ABC的三个顶点坐标为A(3,4),B(2,0),C(8,0).
(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标 ;
(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标 .
科目:初中数学 来源: 题型:
【题目】如图,直线AB∥CD,点E在直线AB上,点G在直线CD上,点P在直线AB.CD之间,∠AEP=40°,∠EPG=900
(1)填空:∠PGC=_________0;
(2)如图, 点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q,当点F在点E的右侧时,如果∠EFG=30°,求∠FQG的度数;
解:过点Q作QM∥CD
因为∠PGC+∠PGD=1800
由(1)得∠PGC=_______0,
所以∠PGD=1800-∠PGC=________0,
因为GQ平分∠PGD,
所以∠PGQ=∠QGD=∠PGD=_________0
(下面请补充完整求∠FQG度数的解题过程)
(3)点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q.如果∠FQG=2∠BFG,请直接写出∠EFG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB∥DE.若△ABC与△DEC的面积相等,且EF=2,AB=3,则DF的长等于_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEF是两个全等的等腰直角三角形,其中∠BAC=∠EDF=90°、AB=AC=1,△DEF中的点E在BC边上运动(不与B、C重合),DE始终经过点A,设EF交AC于点H
(1)求证:△ABE∽△ECH;
(2)设BE= ,CH= ,求与的函数关系式,并求当取何值时, 有最大值,最大值是多少?
(3)当点E运动到何处时,△ABE是等腰三角形,并求出此时CH的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题再现:
数形结合是一种重要的数学思想方法,借助这种思想方法可将抽象的数学知识变得直观并且具有可操作性.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义验证完全平方公式.
将一个边长为的正方形的边长增加,形成两个长方形和两个正方形,如图所示:这个图形的面积可以表示成:
或
∴
这就验证了两数和的完全平方公式.
类比解决:
请你类比上述方法,利用图形的几何意义验证平方差公式.
(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明?
如图所示,表示1个1×1的正方形,即:,表示1个2×2的正方形,与恰好可以拼成1个2×2的正方形,因此:、、就可以表示2个2×2的正方形,即:而、、、恰好可以拼成一个的大正方形.
由此可得:.
尝试解决:
请你类比上述推导过程,利用图形的几何意义确定:_______.(要求写出结论并构造图形写出推证过程).
问题拓广:
请用上面的表示几何图形面积的方法探究:_______.(直接写出结论即可,不必写出解题过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC
(1)作对角线AC的垂直平分线与边AD、BC分别相交于点E、F(尺规作图,保留作图痕迹,不写作法);
(2)连接AF、CE,判断四边形AFCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为
(x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
① ②
解不等式组①,得x>2,
解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.
解答下列问题:
(1)一元二次不等式x2﹣25>0的解集为 ;
(2)分式不等式的解集为 ;
(3)解一元二次不等式2x2﹣3x<0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com