【题目】如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.
(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM= 度,∠EPF= 度;
(2)在(1)的条件下,求图②中∠END与∠CFI的度数;
(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.
【答案】(1)20,70;(2)80°;(3)90°;
【解析】
(1)由PM∥AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∥CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;
(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∥BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;
(3)由(2)可得,∠CFI=180°-2β,由AB∥CD,可得∠END=2α,当FI∥EH时,∠END=∠CFI,据此即可得α+β=90°.
(1)∵PM∥AB,α=20°,
∴∠EPM=∠AEP=20°,
∵AB∥CD,PM∥AB,
∴PM∥CD,
∴∠MPF=∠CFP=50°,
∴∠EPF=20°+50°=70°,
故答案为:20,70;
(2)∵PE平分∠AEH,
∴∠AEH=2α=40°,
∵AD∥BC,
∴∠END=∠AEH=40°,
又∵FG平分∠DFI,
∴∠IFG=∠DFG=β=50°,
∴∠CFI=180°-2β=80°;
(3)由(2)可得,∠CFI=180°-2β,
∵AB∥CD,
∴∠END=∠AEN=2α,
∴当FI∥EH时,∠END=∠CFI,
即2α=180°-2β,
∴α+β=90°.
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.
(1)求证:四边形ADCE是矩形;
(2)当△ABC满足什么条件时,四边形ADCE是正方形?给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=( )
A.1:16
B.1:18
C.1:20
D.1:24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某绿色无公害蔬菜基地有甲、乙两种植户,他们们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
种植户 | 种植A类蔬菜面积(单位:亩) | 种植B类蔬菜面积(单位:亩) | 总收入(单位:元) |
甲 | 1 | 3 | 13500 |
乙 | 2 | 2 | 13000 |
说明:不同种植户种植的同类蔬菜每亩平均收入相等
(1)求A、B两类蔬菜每亩平均收入各是多少元?
(2)今年甲、乙两种植户联合种植,计划合租50亩地用来种植A、B两类蔬菜,为了使总收入不低于16400元,问联合种植最多可以种植A类蔬菜多少亩?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.
(1)求抛物线的函数表达式和顶点坐标;
(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;
(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“珍惜生命,注意安全”是一永恒的话题.在现代化的城市,交通安全晚不能被忽视,下列几个图形是国际通用的几种交通标志,其中不是中心对称图形是( )
A.禁止行车
B.禁止行人通行
C.禁止车辆长时间停放
D.禁止车辆临时或长时间停放
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com