精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=30°,点DBC边上的点,CD= 3,△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,PE+PB的最小值 ______

【答案】9

【解析】

根据翻折变换的性质可得点CE关于AD对称,再根据轴对称确定最短路线问题,BCAD的交点D即为使PB+PE的最小值的点P的位置,然后根据ABC=30°,求出BD的长,即可求出PE+PB的最小值

ACD沿直线AD翻折,点C落在AB边上的点E处,

CE关于AD对称,

D即为使PB+PE的最小值的点P的位置,PB+PE=BC

∵∠ABC=30°,

BD=2DE=2CD=6,

BC=CD+BD=3+6=9.

故答案为:9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC在直角坐标系内的位置如图所示

(1)分别写出点AC的坐标:A   C   

(2)△ABC的周长为   ,面积为   

(3)请在这个坐标系内画出△A1B1C1与△ABC关于x轴对称.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD,延长AB到点E,使BE=AB,连接DEBC于点F,则下列结论不一定成立的是( )

A. E=CDF B. BE=CD C. ADE=BFE D. BE=2CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,点EAD边上,连接BECEEB平分∠AEC .

(1)如图1,判断△BCE的形状,并说明理由;

(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华人民共和国道路交通管理条例规定:小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30 m,过了2 s,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图①,在平面直角坐标系xOy中,A(0,5),C( ,0),AOCD为矩形,AE垂直于对角线OD于E,点F是点E关于y轴的对称点,连AF、OF.

(1)求AF和OF的长;
(2)如图②,将△OAF绕点O顺时针旋转一个角α(0°<α<180°),记旋转中的△OAF为△OA′F′,在旋转过程中,设A′F′所在的直线与线段AD交于点P,与线段OD交于点Q,是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B向点B运动,设运动时间为t秒(t>0)

(1)AC边上是否存在点P,使得PA=PB?若存在,求出t的值;若不存在,说明理由;

(2)若点P恰好在△ABC的角平分线上,请求出t的值,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【试题背景】已知:l ∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3 , 且d1 =d3 = 1,d2 = 2 .我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.
(1)【探究1】如图1,正方形ABCD为“格线四边形”,BEL于点E,BE的反向延长线交直线k于点F. 求正方形ABCD的边长.

(2)【探究2】矩形ABCD为“格线四边形”,其长 :宽 = 2 :1 ,求矩形ABCD的宽
(3)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形, 于点E, ∠AFD=90°,直线DF分别交直线l、k于点G、M. 求证:EC=DF.

(4)【拓 展】如图3,l ∥k,等边三角形ABC的顶点A、B分别落在直线l、k上, 于点B,且AB=4 ,∠ACD=90°,直线CD分别交直线l、k于点G、M,点D、E分别是线段GM、BM上的动点,且始终保持AD=AE, 于点H.

猜想:DH在什么范围内,BC∥DE?直接写出结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠BAD的平分线AEDC于点E.

(1)求证:ADDE

(2)ABCB32CE5 cm,求ABCD的周长.

查看答案和解析>>

同步练习册答案