【题目】△ABC在直角坐标系内的位置如图所示
(1)分别写出点A,C的坐标:A: ,C: ;
(2)△ABC的周长为 ,面积为 ;
(3)请在这个坐标系内画出△A1B1C1与△ABC关于x轴对称.
【答案】(1)(0,3),(﹣2,1);(2)△ABC的周长为:2;面积为:5;(3)详见解析.
【解析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2) 利用勾股定理即可求出AC、AB、BC的长,可得△ABC的周长;利用三角形所在的正方形面积减三个小直角三角形的面积即可求出△ABC的面积;
(3)根据△A1B1C1与△ABC关于x轴找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可.
解:(1)
如图所示:A:(0,3),C:(﹣2,1);
故答案为:(0,3),(﹣2,1);
(2)如图所示:AB=,BC=,
AC=,
故△ABC的周长为:,
面积为:3×4﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:,5;
(3)如图所示:△A1B1C1,即为所求.
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点P的坐标为2,a2+1,则点P所在的象限是____;以方程组 的解为坐标的点x,y在平面直角坐标系中的位置是__________;在平面直角坐标系中,如果mn>0,请写出点m,|n|可能在的所有象限:____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+bx+4 与x轴交于点A(﹣3,0)和B(2,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;
(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线
y=ax2+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC为一个电子跳蚤游戏盘,其中AB=8,AC=9,BC=10.如果电子跳蚤开始时在BC边上的点P0处,BP0=4,第一步跳蚤从点P0处跳到AC边上的点P1处,且CP1=CP0;第二步跳蚤从点P1处跳到AB边上的点P2处,且AP1=AP2;第三步跳蚤从点P2处跳回到BC边上的点P3处,且BP3=BP2……若跳蚤按上述规则跳下去,第n次的落点为Pn,则点P3与点P2019之间的距离为( )
A. 0 B. 1 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为 .
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在等腰Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D.点P为线段CD上一点(不与端点C、D重合),PE⊥PA,PE与BC的延长线交于点E,与AC交于点F,连接AE、AP、BP.
(1)求证:AP=BP;
(2)求∠EAP的度数;
(3)探究线段EC、PD之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是BC边上的点,CD= 3,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,PE+PB的最小值 ______
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com