【题目】如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A
(1)求和的值.
(2)过点B作BC∥x轴,与双曲线交于点C,求△OAC的面积.
【答案】(1),;(2).
【解析】
(1)把点B代入可求出a值,进而可求出OE、BE的长,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,可证明△BOE∽△OAD,根据相似三角形的性质及正切的定义可得,即可求出AD和OD的长,可得A点坐标,代入即可求出k值;(2)过点C作CF⊥x轴于F,由B点坐标可知C点纵坐标,由C点在图象上,可求出C点横坐标,可得CF的长,由点A、点C在反比例函数图象上,可得S△AOD=S△COF,根据即可得答案.
(1)∵反比例函数经过点B
∴
∴OE=3,BE=1,
如图,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,
∵∠AOB=90°,
∴∠EOB+∠AOD=90°,
∵∠AOD+∠OAD=90°,
∴∠EOB=∠OAD,
又∵∠BEO=∠ODA=90°,
∴△BOE∽△OAD,
∴,
∴AD=OE=3,OD=BE=,
∴,
∴.
(2)如图,过点C作CF⊥x轴于F
由(1)可知AD=,OD=,
∵BC∥x轴,B(-3,1),
∴=1,
∵点C在双曲线上,
∴=9,
∴C(9,1),
∴CF=1,
∵点A、点C在反比例函数图象上,
∴S△AOD=S△COF,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,已知点A1(1,1),将点A1向上平移1个单位长度,再向右平移2个单位长度得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度得到点A4,…按这个规律平移下去得到点An(n为正整数),则点An的坐标是( )
A.(2n,2n﹣1)B.(2n﹣1,2n)
C.(2n﹣1,2n+1)D.(2n﹣1,2n﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设一次函数y1=x+a+b和二次函数y2=x(x+a)+b.
(1)若y1,y2的图象都经过点(-2,1),求这两个函数的表达式;
(2)求证:y1,y2的图象必有交点;
(3)若a>0,y1,y2的图象交于点(x1,m),(x2,n)(x1<x2),设(x3,n)为y2图象上一点(x3≠x2),求x3-x1的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直线上,点E在AD上,连接DG,BE.
(1)证明:BE=DG;
(2)发现:当正方形AEFG绕点A旋转,如图②所示,判断BE与DG的数量关系和位置关系,并说明理由;
(3)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,判断BE与DG的数量关系和位置关系是否与(2)的结论相同,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:
捐款的数额(单位:元) | 5 | 10 | 20 | 50 | 100 |
人数(单位:个) | 2 | 4 | 5 | 3 | 1 |
关于这15名同学所捐款的数额,下列说法正确的是
A.众数是100 B.平均数是30 C.极差是20 D.中位数是20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,按以下步骤作图:①分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN,分别交边AB,BC于点D和E,连接CD.若∠BCA=90°,AB=8,则CD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的长度是12.5米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角∠CAQ为45°,坡角∠BAQ为37°,求二楼的层高BC(精确到0.1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.
(1)求证:△DOE∽△ABC;
(2)求证:∠ODF=∠BDE;
(3)连接OC.设△DOE的面积为S.sinA=,求四边形BCOD的面积(用含有S的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC 中,∠BAC=90°,CE 平分∠ACB,点 D 在 CE的延长线上,连接 BD,过B作BF⊥BC交 CD 于点 F,连接 AF,若CF=2BD ,DE:CE=5:8 , BF ,则AF的长为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com