【题目】如图1,在平面直角坐标系中,直线与x轴、y轴分别交于点A和点B(0,-1),抛物线经过点B,且与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4),DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A'O'B',点A、O、B的对应点分别是点A'、O'、B'. 若△A'O'B'的两个顶点恰好落在抛物线上,请直接写出点A’的横坐标.
【答案】(1)n=2,;(2)p=,p有最大值;(3)点A'的横坐标为:或.
【解析】
(1)把点B的坐标代入直线解析式可得m的值,再把点C的坐标代入直线解析式可得n的值,然后利用待定系数法求二次函数解析式即可;
(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
(3)分两种情况进行讨论:①当点O’、B’在抛物线上时,由O’B’=OB=1;②当点A’、B’在抛物线上时,由A’B’=AB=,分别求出点A’的横坐标即可.
(1)将B(0,-1)代入得:m=-1,
在中,当y=0时,x=,即A(,0),
∵过点C(4,n),得:n=2,即C(4,2),
将B(0,-1)、C(4,n),代入得:
,解得:,
即抛物线的解析式为:.
(2)由(1)知,OA=,OB=1,在Rt△OAB中,由勾股定理得:AB=,
∵DE∥y轴,
∴∠ABO=∠DEF,
∴sin∠DEF= sin∠ABO=,cos∠DEF=cos∠ABO=,
∴EF=DE·cos∠DEF=DE,DF=DE·cos∠DEF=DE,
∴p=2(DE+DF)=DE,
∵点D的横坐标为t,
∴D(t,),E(t,),
∴DE=-()=,
p=()
=,
∴当t=2时,p有最大值.
(3)由题意知,A’、O’横坐标相等,此二点不会同时在抛物线上,
①当点O’、B’在抛物线上时,由O’B’=OB=1,
抛物线的对称轴:x=得,O’横坐标为-=,
即A’横坐标为:;
②当点A’、B’在抛物线上时,由A’B’=AB=,
设点A’(n,y),则B’(n+1,y-),
∴,解得:n=
即A’横坐标为:;
综上所述,点A’的横坐标为:或.
科目:初中数学 来源: 题型:
【题目】已知,在⊙O中,AB、CD是直径,弦AE∥CD.
(1)如图1,求证:;
(2)如图2,直线EC与直线AB交于点F,点G在OD上,若FO=FG,求证:△CFG是等腰三角形;
(3)如图3,在(2)的条件下,连接BD,若AE+CD=BD,DG=4,求线段FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,在矩形 ABCD 中,AB=8,AD=10,E 是 CD 边上一点,连接 AE,将矩形 ABCD 沿 AE 折叠,顶点 D 恰好落在 BC 边上点 F 处,延长 AE 交 BC 的延长线于点G.
(1)求线段 CE 的长;
(2)如图 2,M,N 分别是线段 AG,DG 上的动点(与端点不重合),且∠DMN=∠DAM, 设 DN=x.
①求证四边形 AFGD 为菱形;
②是否存在这样的点 N,使△DMN 是直角三角形?若存在,请求出 x 的值;若不存在, 请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过A,B,C三点.
(1)求抛物线的解析式。
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=kx﹣与抛物线y=ax2+bx+交于点A、C,与y轴交于点B,点A的坐标为(2,0),点C的横坐标为﹣8.
(1)请直接写出直线和抛物线的解析式;
(2)点D是直线AB上方的抛物线上一动点(不与点A、C重合),作DE⊥AC于点E.设点D的横坐标为m.求DE的长关于m的函数解析式,并写出DE长的最大值;
(3)平移△AOB,使平移后的三角形的三个顶点中有两个在抛物线上,请直接写出平移后的点A对应点A′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与计算,请阅读以下材料,并完成相应的问题.
角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则=.下面是这个定理的部分证明过程.
证明:如图2,过C作CE∥DA.交BA的延长线于E.…
任务:(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,则△ABD的周长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)如图,在中,点,分别在,上,设,相交于点,若,.请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形?
(2)在中,如果是不等于的锐角,点,分别在,上,且.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com