【题目】如图,A是∠MON边OM上一点,AE∥ON.
(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.
【答案】
(1)解:如图所示:
(2)证明:∵OB平分∠MON,
∴∠AOB=∠BOC.
∵AE∥ON,
∴∠ABO=∠BOC.
∴∠AOB=∠ABO,AO=AB.
∵AD⊥OB,
∴BD=OD.
在△ADB和△CDO中
∵
∴△ADB≌△CDO,AB=OC.
∵AB∥OC,
∴四边形OABC是平行四边形.
∵AO=AB,
∴四边形OABC是菱形.
【解析】(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB即可.
科目:初中数学 来源: 题型:
【题目】为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:
甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.
现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.
(1)求A型花和B型花每枝的成本分别是多少元?
(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1 , A2 , A3 , …,An是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1 , A2 , A3 , …,An+1作x轴的垂线交一次函数 的图象于点B1 , B2 , B3 , …,Bn+1 , 连接A1B2 , B1A2 , A2B3 , B2A3 , …,AnBn+1 , BnAn+1依次产生交点P1 , P2 , P3 , …,Pn , 则Pn的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.
(1)求证:AB是⊙O的切线;
(2)若CF=4,DF= ,求⊙O的半径r及sinB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.
(1)求取出纸币的总额是30元的概率;
(2)求取出纸币的总额可购买一件51元的商品的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段 | x | 还车数 | 借车数 | 存量y |
7:00﹣8:00 | 1 | 7 | 5 | 15 |
8:00﹣9:00 | 2 | 8 | 7 | n |
… | … | … | … | … |
根据所给图表信息,解决下列问题:
(1)m= , 解释m的实际意义:;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com