【题目】在平面直角坐标系内,反比例函数和二次函数y=a(x2+x﹣1)的图象交于点A(1,a)和点B(﹣1,﹣a).
(1)求直线AB与y轴的交点坐标;
(2)要使上述反比例函数和二次函数在某一区域都是y随着x的增大而增大,求a应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当Q在以AB为直径的圆上时,求a的值.
【答案】(1)求直线AB与y轴的交点坐标(0,0);(2)a<0且x≤﹣;(3)a=±.
【解析】
(1)由待定系数法可求直线AB解析式,即可求解;
(2)由反比例函数和二次函数都是y随着x的增大而增大,可得a<0,又由二次函数y=a(x2+x﹣1)的对称轴为x=﹣,可得x≤﹣时,才能使得y随着x的增大而增大;
(3)先求点Q坐标,由OQ=OA,可得方程,即可求a的值.
(1)设直线AB的解析式为:y=kx+b,
由题意可得
∴b=0,k=a,
∴直线AB的解析式为:y=ax,
∴当x=0时,y=0,
∴直线AB与y轴的交点坐标(0,0);
(2)∵反比例函数过点A(1,a),
∴反比例函数解析式为:y=,
∵要使反比例函数和二次函数都是y随着x的增大而增大,
∴a<0.
∵二次函数y=a(x2+x﹣1)=a(x+)2﹣a,
∴对称轴为:直线x=﹣.
要使二次函数y=a(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x≤﹣时,才能使得y随着x的增大而增大.
综上所述,a<0且x≤﹣;
(3)∵二次函数y=a(x2+x﹣1)=a(x+)2﹣a,
∴顶点Q(﹣,﹣a),
∵Q在以AB为直径的圆上,
∴OA=OQ,
∴(﹣)2+(﹣)2=12+a2,
∴a=±
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于点.
(1)求点的坐标和该抛物线的顶点坐标;
(2)若该抛物线与轴交于两点,求的面积;
(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CDOE;
(3)若,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有若千间标准客房,当房价为200元/间时,日均入住数为60间.市场调查表明,在物价局核定的每间标准房价格在160~220元之间(含160元,220元)浮动时,每提高10元,日均入住数减少10间.在不考虑其他因素的前提下,设标准房的价格为x元/间,日均入住数为y间. .
(1) y关于x的解析式为_ .
(2)当标准房的价格定为多少元时,客房的日营业额为10500元?
(3)当标准房的价格定为多少元时,客房的日营业额最大,最大为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0)和点C,与y轴交于点B.
(1)求抛物线解析式和点B坐标;
(2)在x轴上有一动点P(m,0)过点P作x轴的垂线交直线AB于点N,交抛物线与点M,当点M位于第一象限图象上,连接AM,BM,求△ABM面积的最大值及此时M点的坐标;
(3)如图2,点B关于x轴的对称点为D,连接AD,BC.
①填空:点P是线段AC上一点(不与点A、C重合),点Q是线段AB上一点(不与点A、B重合),则两条线段之和PQ+BP的最小值为 ;
②填空:将△ABC绕点A逆时针旋转a(0°<α<180°),当点C的对应点C′落在△ABD的边所在直线上时,则此时点B的对应点B′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为( )
A.B.C.或D.或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com