【题目】如图1,,,,分别是四边形各边的中点,且,,.
(1)试判断四边形的形状,并证明你的结论;
(2)如图2,依次取,,,的中点,,,,再依次取,,,的中点,,,……以此类推,取,,,的中点,,,,根据信息填空:
①四边形的面积是__________;
②若四边形的面积为,则________;
③试用表示四边形的面积___________.
【答案】(1)矩形,见解析;(2)①15,②5,③
【解析】
(1)根据中位线定理,得出四边形是平行四边形,再根据可判断四边形为矩形;
(2)①根据题意算出A1B1=3,A1D1=5,可得四边形的面积;
②根据题意算出A2D2= B2C2= C2D2=B2A2=,可得四边形为菱形,得出四边形的面积,以此类推得出=,令=,解出n即可;
③由②可得结果;
解:(1)四边形是矩形,
证明:∵,,,分别是四边形各边的中点,
∴,,
∴,
同理可得,
∴四边形是平行四边形,
又∵,
易得,
∴四边形是矩形;
(2)①由题意可知:A1B1=AC=3,A1D1=BD=5,
四边形的面积=3×5=15;
②由构图过程可得:A2D2=B2C2=B1D1==,C2D2=B2A2=A1C1==,
可知四边形为菱形,
∴===;
同理可求:=,=,…,=,
故当四边形的面积为时,=,
解得:n=5;
③由②可知:用表示四边形的面积为.
科目:初中数学 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出如下问题:
尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.
已知线段a,c如图.
小芸的作法如下:
① 取AB=c,作AB的垂直平分线交AB于点O; ② 以点O为圆心,OB长为半径画圆;
③ 以点B为圆心,a长为半径画弧,与⊙O交于点C;④ 连接BC,AC.
则Rt△ABC即为所求.老师说:“小芸的作法正确.”
请回答:小芸的作法中判断∠ACB是直角的依据是________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄.
(1)设汽车行驶到公路AB上点P位置时,距离村庄M最近;行驶到点Q位置时,距离村庄N最近.请在图中的公路AB上分别画出点P,Q的位置(保留画图痕迹).
(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离M,N两村庄都越来越近?在哪一段路上距离村庄N越来越近,而离村庄M却越来越远?(分别用文字表述你的结论,不必证明).
(3)到在公路AB上是否存在这样一点H,使汽车行驶到该点时,与村庄M,N的距离相等?如果存在,请在图中的AB上画出这一点(保留画图痕迹,不必证明);如果不存在,请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=x+1与x、y 轴分别交于点A、B,在直线 AB上截取BB1=AB,过点B1分别作y 轴的垂线,垂足为点C1,得到⊿BB1C1;在直线 AB上截取B1B2= BB1,过点B2分别作y 轴的垂线,垂足为点C2,得到⊿BB2C2;在直线AB上截取B2B3= B1B2,过点B3作y 轴的垂线,垂足为点C3,得到⊿BB3C3;……;第3个⊿BB3C3的面积是___________;第n个⊿BBnCn的面积是______________(用含n的式子表示,n是正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y= (x+1)2-1的图象.
(1)试确定a,h,k的值;
(2)指出二次函数y=a(x-h)2+k的开口方向,对称轴和顶点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com