精英家教网 > 初中数学 > 题目详情

【题目】如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,若知道图中阴影部分的面积,则一定能求出(

A.直角三角形的面积B.最大正方形的面积

C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和

【答案】C

【解析】

根据勾股定理及正方形面积的计算方法可知:将三个正方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,从而即可得出答案.

根据勾股定理及正方形的面积计算方法可知:

较小两个直角三角形的面积之和=较大正方形的面积,

所以将三个方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,所以知道了图2阴影部分的面积即可知道两小正方形重叠部分的面积.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,DEAB,过点EEFDE,交BC的延长线于点F

1)求∠F的度数;

2)若CE=4,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.

(1)图中与△BDE全等的三角形是 ,请加以证明;

(2)若AE=6 cm,AC=4 cm,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列材料,然后回答问题:

在关于x的一元二次方程ax2+bx+c=0(a≠0)中,若各项的系数之和为零,即a+b+c=0,则有一根为1,另一根为.

证明:设方程的两根为x1,x2,由a+b+c=0,知b=-(a+c),

∵x=

∴x1=1,x2.

(1)若一元二次方程ax2+bx+c=0(a≠0)的各项系数满足a-b+c=0,请直接写出此方程的两根;

(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有两个相等的实数根,运用上述结论证明:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料1:

对于两个正实数,由于,所以,即,所以得到,并且当时,

阅读材料2:

,则 ,因为,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.

根据以上阅读材料,请回答以下问题:

(1)比较大小

(其中≥1) -2(其中<-1)

(2)已知代数式变形为,求常数的值

(3)= 时,有最小值,最小值为 (直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AP=DP,DE=DF,DEAB于E,DFAC于F,则下列结论:.AD平分BAC;.BED≌△FPD;.DPAB;.DF是PC的垂直平分线.其中正确的是= _________ .(写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的边上异于一点,过点作直线截得的三角形与相似,那么这样的直线可以作的条数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题学习:设计概率模拟实验.

在学习概率时,老师说:掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是.”小海、小东、小英分别设计了下列三个模拟实验:

小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;

小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上18个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;

小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:

小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC,AB=AC,BAC=50°,PBC边上一点ABP绕点A逆时针旋转50°,P旋转后的对应点为点P′.

(1)画出旋转后的三角形;

(2)连接PP′,若∠BAP=20°,求∠PP′C的度数

查看答案和解析>>

同步练习册答案