【题目】如图,点E是菱形ABCD的边AD延长线上的点,AE =AC,CE=CB,则∠B的度数为_______.
【答案】108 °
【解析】分析:设∠DAC的度数为x,利用菱形的性质得DA=DC,∠DCA=∠DAC=x,则利用三角形外角性质得∠EDC=2x,接着利用等腰三角形的性质得到∠E=∠EDC=2x,∠ACE=∠E=2x,于是利用三角形内角和定理得到x+2x+2x=180°,解得x=36°,然后计算出∠ADC的度数,从而得到∠B的度数.
详解:设∠DAC的度数为x.
∵四边形ABCD为菱形,∴DA=DC,∠ADC=∠B,∴∠DCA=∠DAC=x,∴∠EDC=∠DCA+∠DAC=2x.
∵CD=CE,∴∠E=∠EDC=2x.
∵AE=AC,∴∠ACE=∠E=2x,∴x+2x+2x=180°,解得:x=36°.
∵∠ADC=180°﹣2x=108°,∴∠B=∠ADC=108°.
故答案为:108°.
科目:初中数学 来源: 题型:
【题目】某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分; 第二种是包月制,69元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.02元/分.
(1)若小明家今年三月份上网的时间为小时,请你分别写出两种收费方式下小明家应该支付的费用;
(2)若小明估计自家一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,以BC为直径的⊙O交AC于点D,过点D作DE⊥AB,DF⊥BC,垂足分别为E、F.
(1)求证:ED是⊙O的切线;
(2)若DF=3,cosA=,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面的图形是由边长为l的正方形按照某种规律排列而组成的.
(1)观察图形,填写下表:
(2)推测第n个图形中,正方形的个数为 ,周长为 (都用含n的代数式表示).
(3)这些图形中,任意一个图形的周长y与它所含正方形个数x之间的关系可表示为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.
求:(1)AC的长度;
(2)判断△ACB是什么三角形?并说明理由?
(3)四边形ABCD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:
甲 | 乙 | 丙 | 丁 | |
(环) | 8.4 | 8.6 | 8.6 | 7.6 |
S2 | 0.74 | 0.56 | 0.94 | 1.92 |
如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( )
A.甲 B.乙 C.丙 D.丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E,F分别是边AB,BC上的点,且BE=CF.连结CE,DF.将线段FD绕点F逆时针旋转90°,得到线段FG.
(1)依题意将图1补全;
(2)连结EG,请判断:EG与CF的数量关系是 ,位置关系是 ;并证明你的结论;
(3)当FG经过BE中点时,写出求∠CDF度数的思路.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com