【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=
CD,从而得出结论:AC+BC=
CD.
简单应用:
(1)在图①中,若AC=2,BC=4,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图4,△ABC中,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=
AC,CE=CA,且点E在直线AC的左侧时,点Q为AE的中点,则线段PQ与AC的数量关系是 .
![]()
![]()
【答案】(1)
;(2)
;(3)
或
.
【解析】
(1)由题意可知:AC+BC=
CD,所以将AC与BC的长度代入即可得出CD的长度;(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;(3)当点E在直线AC的左侧时,连接CQ、CP后,利用(2)的结论进行求解即可.
(1)由题意知:AC+BC=
CD,
∴2+4 =
CD,
∴CD=3
;
(2)解:连接AC、BD、AD,
∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
∵
,
∴AD=BD,
将△BCD绕点D,逆时针旋转90°到△AED处,如图③,
![]()
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三点共线,
∵AB=13,BC=12,
∴由勾股定理可求得:AC=5,
∵BC=AE,
∴CE=AE+AC=17,
∵∠EDA=∠CDB,
∴∠EDA+∠ADC=∠CDB+∠ADC,
即∠EDC=∠ADB=90°,
∵CD=ED,
∴△EDC是等腰直角三角形,
∴CE=
CD,
∴CD=
;
(3)当点E在直线AC的左侧时,如图④,
![]()
连接CQ,PC,
∵AC=BC,∠ACB=90°,点P是AB的中点,
∴AP=CP,∠APC=90°,
又∵CA=CE,点Q是AE的中点,
∴∠CQA=90°,
设AC=a,
∵AE=
AC,
∴AE=
a,
∴AQ=
AE=
,
由勾股定理可求得:CQ=
a,
由(2)的证明过程可知:AQ+CQ=
PQ,
∴
PQ=
a+
a,
∴
PQ=
AC或
;
∴当点E在直线AC的左侧时,线段PQ与AC的数量关系是
PQ=
AC或
.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,先将抛物线y=2x2﹣4x关于y轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为( )
A.y=﹣2x
﹣4xB.y=﹣2x
+4x
C.y=﹣2x
﹣4x﹣4D.y=﹣2x
+4x+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形
的边长为
,点
、
分别在边
、
上,且
,
、
交于点
.下列结论:
,
,
,
中,正确的有________________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
![]()
(1)求BD的长;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学探究活动课中,某同学有一块矩形纸片ABCD,已知AD=15,AB=9,M为线AD上的一个动点,将△ABM沿BM折叠得到△MBN,若△NBC是直角三角形,则AM长为__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=
(BC﹣AD),其中正确的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com