精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形 的边长为 ,点 分别在边 上,且 交于点 .下列结论: 中,正确的有________________

【答案】①③④

【解析】

由正方形ABCD的边长为4AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=DFC,即可求得③正确;由①易证得④正确.

解:∵正方形ABCD的边长为4

BC=CD=4,∠B=DCF=90°

AE=BF=1

BE=CF=4-1=3

△EBC△FCD中,

∴△EBC≌△FCDSAS),

∴∠CFD=BEC

∴∠BCE+BEC=BCE+CFD=90°

∴∠DOC=90°;故①正确;

连接DE,如图所示:

OC=OE

DFEC

CD=DE

CD=ADDE(矛盾),故②错误;

∵∠OCD+CDF=90°,∠CDF+DFC=90°

∴∠OCD=DFC

tanOCD=tanDFC=,故③正确;

∵△EBC≌△FCD

SEBC=SFCD

SEBC-SFOC=SFCD-SFOC

SODC=S四边形BEOF.故④正确;

故答案为:①③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用同样规格的黑白两色的正方形瓷砖铺设长方形地面,观察下列图形并解答问题.

1)在第a个图中,共有   块白瓷砖和   块黑瓷砖(用含a的代数式表示);

2)若按上图的方式铺一块长方形地面共用了420块瓷砖,求此时a的值;

3)已知白瓷砖每块6元,黑瓷砖每块8元,某工厂按如图方式铺设厂房地面,其中黑瓷砖的费用比白瓷砖的费用多924元,问白瓷砖和黑瓷砖各用了多少块?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于第一象限CD两点,坐标轴交于AB两点,连结OCODO是坐标原点).

1)利用图中条件,求反比例函数的解析式和m的值;

2)双曲线上是否存在一点P,使得POCPOD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE

求证:1∠CEB=∠CBE

2)四边形BCED是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,对角线的垂直平分线分别交于点,连接.

1)求证:四边形为菱形.

2)若,求菱形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:

如图①,在四边形ADBC中,∠ACB=ADB=90°AD=BD,探究线段ACBCCD之间的数量关系.

小吴同学探究此问题的思路是:将BCD绕点D,逆时针旋转90°AED处,点BC分别落在点AE处(如图②),易证点CAE在同一条直线上,并且CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD

简单应用:

1)在图①中,若AC=2BC=4,则CD=

2)如图③,AB是⊙O的直径,点CD在⊙上,弧AD=弧BD,若AB=13BC=12,求CD的长.

拓展规律:

3)如图4,ABC中,∠ACB=90°AC=BC,点PAB的中点,若点E满足AE=ACCE=CA,且点E在直线AC的左侧时,点QAE的中点,则线段PQAC的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.

(1)yx的函数关系式并直接写出自变量x的取值范围;

(2)设每月的销售利润为W,请直接写出Wx的函数关系式;

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

同步练习册答案