【题目】如图,在△ABC中,AB=AC,AB是⊙O的直径,⊙O与BC交于点D,⊙O与AC交于点E,DF⊥AC于F,连接DE.
(1)求证:D为BC中点;
(2)求证:DF与⊙O相切;
(3)若⊙O的半径为5,tan∠C=,则DE= .
【答案】(1)证明见解析(2)相切(3)6
【解析】
(1)连接AD,根据圆周角定理得到∠ADB=90°,根据等腰三角形的性质即可得到结论;
(2)连接OD,根据平行线的性质得到∠DFC=∠ODF,根据切线的判定定理即可得到结论;
(3)根据平行线的性质和圆内接四边形的性质得到∠B=∠EDO,根据余角的性质得到∠EDF=∠CDF,得到DE=CD,解直角三角形即可得到结论.
(1)证明:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴D为BC中点;
(2)连接OD,
∵AO=BO,BD=CD,
∴OD∥AC,
∴∠DFC=∠ODF,
∵DF⊥AC,
∴∠ODF=90°,
∴OD⊥DF,
∴DF与⊙O相切;
(3)∵OD⊥DF,DF⊥AC,
∴AC∥OD,
∴∠AED+∠ODE=180°,
∵∠AED+∠B=180°,
∴∠B=∠EDO,
∵∠EDF+∠EDO=∠CDF+∠ODB=90°,
∴∠EDF=∠CDF,
∴DE=CD,
∵⊙O的半径为5,tan∠C=,
∴AB=10,BD=6,
∴DE=CD=BD=6.
故答案为:6.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.
(1)求证:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半径为且坐标原点为圆心的圆交轴、轴于点、、、,过圆上的一动点(不与重合)作,且(在右侧)
(1)连结,当时,则点的横坐标是______.
(2)连结,设线段的长为,则的取值范围是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=4,D是AB上一个动点,将点D绕点C顺时针旋转60°,得到点E,连接AE.若AE=,则BD=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:
(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为 .
(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE=BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.
问题解决:
(3)为了迎接新年的到来,西安城墙举办了迎新年大型灯光秀表演.其中一个镭射灯距城墙30米,镭射灯发出的两根彩色光线夹角为60°,如图③,若将两根光线(AB,AC)和光线与城墙的两交点的连接的线段(BC)看作一个三角形,记为△ABC,那么该三角形周长有没有最小值?若有,求出最小值,若没有,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,反比例函数(k是常数,且)的图象经过点.
(1)若b=4,求y关于x的函数表达式;
(2)点也在反比例函数y的图象上:
①当且时,求b的取值范围;
②若B在第二象限,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com