【题目】如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x>0)的图象经过点E,F.
(1)求反比例函数及一次函数解析式;
(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.
【答案】(1);;(2)点P坐标为(,).
【解析】
(1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;
(2)先求出△EBF的面积,
点P是线段EF上一点,可设点P坐标为,
根据面积公式即可求出P点坐标.
解:(1)∵反比例函数经过点,
∴n=2,
反比例函数解析式为.
∵的图象经过点E(1,m),
∴m=2,点E坐标为(1,2).
∵直线 过点,点,
∴,解得,
∴一次函数解析式为;
(2)∵点E坐标为(1,2),点F坐标为,
∴点B坐标为(4,2),
∴BE=3,BF=,
∴,
∴ .
点P是线段EF上一点,可设点P坐标为,
∴,
解得,
∴点P坐标为.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当ΔCB′E为直角三角形时,则AE的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,是的中点,是线段延长线上一点,过点作,与线段的延长线交于点,连结、.
求证:;
若,试判断四边形是什么样的四边形,并证明你的结论;
若为的中点,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)
(1)画出格点△ABC关于直线DE的对称的△A1B1C1;
(2)在DE上画出点P,使PA+PC最小;
(3)在DE上画出点Q,使QA﹣QB最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察与发现:小明将三角形纸片沿过点的直线折叠,使得落在边上,折痕为,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点和点重合,折痕为,展平纸片后得到(如图②).小明认为是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:将矩形纸片沿过点的直线折叠,使点落在边上的点处,折痕为 (如图③);再沿过点的直线折叠,使点落在上的点处,折痕为 (如图④);再展平纸片(如图⑤).求图⑤中的大小。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′.
(1)在图2中,除△ADC与△C′BA′全等外,请写出其他2组全等三角形;① ;② ;
(2)请选择(1)中的一组全等三角形加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com