【题目】如图,在矩形中,,,点是边的中点,将沿折叠后得到.延长交边于点,则__________.
【答案】
【解析】
连接EG,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD=3,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.
如图,连接EG;
∵四边形ABCD为矩形,
∴∠D=∠C=90°,DC=AB=4;
由题意得:EF=DE=EC=2,∠EFG=∠D=90°;
在Rt△EFG与Rt△ECG中,
,
∴△EFG≌△ECG,
∴设FG=CG=x,∠FEG=∠CEG;
同理可证:AF=AD=5,∠FEA=∠DEA,
∴
而EF⊥AG,可得△EFG∽△AFG
∴EF2=AFFG,
∴ 22=5x,
∴x=,
即CG的长为;
故该题答案为.
科目:初中数学 来源: 题型:
【题目】如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点DE为圆心,大于DE的一半长为半径作弧两弧交于F;
②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K使K和B在AC的两侧;
所以BH就是所求作的高.其中顺序正确的作图步骤是( )
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数 y=ax2+bx+c 的图象与 x 轴的交点的横坐标分别为-1,3,则:
①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意 x 均有 ax2+bx≥a+b,其中结论正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O.与AC相切于点E,连结DE并延长与BC的延长线交于点F.
(1)求证:EF2=BDCF;
(2)若CF=1,BD=5.求sinA的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅(购买的数量不超过8吨),包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(单位:吨)之间的函数关系如图所示.
(1)求y与x的函数表达式?
(2)当销售数量为多少时,该公司经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)
(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是
①当该公司销售杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?
②该公司销售杨梅吨数在 范围时,采用深加工方式比直接包装销售获得毛利润大些?(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF.其中正确的结论有( )个
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示):_____;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与两轴分别交于A、B、C三点,已知点A(﹣3,0),B(1,0).点P在第二象限内的抛物线上运动,作PD⊥x轴于点D,交直线AC于点E.
(1)b= ;c= ;
(2)求线段PE取最大值时点P的坐标,这个最大值是多少;
(3)连接AP,并以AP为边作等腰直角△APQ,当顶点Q恰好落在抛物线的对称轴上时,直接写出对应的P点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com