精英家教网 > 初中数学 > 题目详情

【题目】某校计划把一块近似于直角三角形的废地开发为生物园如图所示,∠ACB=90°,BC=60,∠A=36°.

(1)若入口处EAB边上且与AB等距离CE的长精确到个位);

(2)D点在AB边上计划沿线段CD修一条水渠.已知水渠的造价为50/水渠路线应如何设计才能使造价最低求出最低造价

其中sin36°=0.5878,cos36°=0.8090,tan36°=0.7265)

【答案】(1)51;(2)2427元.

【解析】试题分析:(1)根据已知求得AB的长再根据斜边上的中线等于斜边的一半从而求得CE的长

2)过CCDAB则沿线段CD修水渠造价最低.

试题解析:(1)在RtABCAB===102.08.又∵CERtABC中斜边AB上的中线CE=AB51(米).

2)在RtABC中作CDABABD则沿线段CD修水渠造价最低∴∠DCB=A=36°,∴在RtBDCCD=BC×cosDCB=60×cos36°=48.54∴水渠的最低造价为50×48.54=2427(元).

水渠的最低造价为2427元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分6分)如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.已知旗杆DE的高度为12米,试求楼房CB的高度.

(参考数据:sin22°≈037cos22°≈093tan22°≈040sin385°≈062cos385°≈078tan385°≈080

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与直线y=x+3x轴负半轴于点A,交y轴于点C,交x轴正半轴于点B.

(1)求抛物线的解析式;

(2)点P为抛物线上任意一点,设点P的横坐标为x.

①若点P在第二象限,过点PPNx轴于N,交直线AC于点M,求线段PM关于x的函数解析式,并求出PM的最大值;

②若点P是抛物线上任意一点,连接CP,以CP为边作正方形CPEF,当点E落在抛物线的对称轴上时,请直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形ABCD,∠EAF=45°,连接对角线BDAEMAFNDN=1,BM=2,那么MN=_____.证明DN2+BM2=MN2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,对于任意实数x1x2,当x1x2时,满足y1y2的是(  )

A. y=﹣3x+2B. y2x+1C. y5xD. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).

(1)求该抛物线所对应的二次函数的表达式及顶点M的坐标;

(2)连结CB、CM,过点MMN⊥y轴于点N,求证:∠BCM=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2468,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:

1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.

2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.

查看答案和解析>>

同步练习册答案