【题目】计算:
(1)[x(x2-2x+3)-3x]÷x2;
(2)x(4x+3y)-(2x+y)(2x-y);
(3)5a2b÷·(2ab2)2;
(4)(a-2b-3c)(a-2b+3c).
【答案】(1)2x-4;(2)3xy+y2;(3)-60a3b4;(4)a2-4ab+4b2-9c2.
【解析】
(1)先算括号,再算除法即可;
(2)先算乘法,再合并同类项即可.
(3)先算乘方,再算除法和乘法即可;
(4)先变形为[(a-2b)-3c][(a-2b)+3c],再按平方差公式计算即可.
解:(1)原式=(x3-2x2+3x-3x)÷x2=(x3-2x2)÷x2=2x-4.
(2)原式=4x2+3xy-(4x2-y2)=4x2+3xy-4x2+y2=3xy+y2.
(3)原式=5a2b÷·4a2b4=-60a3b4.
(4)原式=[(a-2b)-3c][(a-2b)+3c]=(a-2b)2-(3c)2=a2-4ab+4b2-9c2.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD
(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分8分)
如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(),正六边形的边长为()cm(其中),求这两段铁丝的总长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是元.超市规定每盒售价不得少于元.根据以往销售经验发现;当售价定为每盒元时,每天可以卖出盒,每盒售价每提高元,每天要少卖出盒.
当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?
为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于元.如果超市想要每天获得元的利润,那么超市每天销售月饼多少盒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为7的正方形ABCD中放入五个小正方形后形成一个中心对称图形,其中两顶点E、F分别在边BC、AD上,则放入的五个小正方形的面积之和为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,“主收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣1)m的正方形,两块试验田的小麦都收获了500kg.
(1)哪种小麦的单位面积产量高?
(2)若高的单位面积产量是低的单位面积产量的(kg)倍,求a的值
(3)利用(2)中所求的a的值,分解因式x2﹣ax﹣108=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC与E、F点。
(1)如图,若EF∥AB,求证DE=DF
(2)如图,若EF与AB不平行,则问题(1)的结论是否成立?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com