精英家教网 > 初中数学 > 题目详情

【题目】如图,O的半径为3,A,P两点在O上,点B在O内,tan∠APB=,AB⊥AP.如果OBOP,那么OB的长为_____

【答案】1

【解析】

如图,连接OA,作AMOBOB的延长线于M,作PNMAMA的延长线于N.则四边形POMN是矩形.想办法求出OMBM即可解决问题;

解:如图,连接OA,作AMOBOB的延长线于M,作PNMAMA的延长线于N.则四边形POMN是矩形.

∵∠POBPAB=90°,

POBA四点共圆,

∴∠AOBAPB

tanAOM=tanAPB,设AM=4kOM=3k

RtOMA中,(4k2+(3k2=32

解得k(负根已经舍弃),

AMOMANMNAM

∵∠MAB+ABM=90°,MAB+PAN=90°,

∴∠ABMPAN∵∠AMBPNA=90°,

∴△AMB∽△PNA

BM

OBOMBM=1.

故答案为1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.

(1)用树状图或列表法求出小王去的概率;

(2)小李说:这种规则不公平,你认同他的说法吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在践行“社会主义核心价值观”演讲比赛中对名列前20名的选手的综合分数m进行分组统计结果如表所示

(1)a的值

(2)若用扇形图来描述求分数在6≤m<7内所对应的扇形图的圆心角大小

(3)将在第一组内的两名选手记为A1A2在第四组内的两名选手记为B1B2从第一组和第四组中随机选取2名选手进行调研座谈求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年9月热播的专题片《辉煌中国﹣﹣圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞“厉害了,我的国!”片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图1所示)主桥的主跨长度在世界斜拉桥中排在前列.在图2的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨BD的中点为E,最长的斜拉索CE长577m,记CE与大桥主梁所夹的锐角∠CEDα,那么用CE的长和α的三角函数表示主跨BD长的表达式应为BD_____m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段BC长为13,以C为顶点,CB为一边的∠α满足cosα=.锐角△ABC的顶点A落在∠α的另一边上,且满足sinA.求△ABC的高BDAB边的长,并结合你的计算过程画出高BDAB边.(图中提供的单位长度供补全图形使用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于O,AB是O的直径.PC是O的切线,C为切点,PDAB于点D,交AC于点E.

(1)求证:∠PCE=∠PEC;

(2)若AB=10,ED=,sinA=,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国古代数学著作《九章算术》中记载了这样一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现代语言表述为:如图,AB为⊙O的直径,弦CDAB于点EAE = 1寸,CD = 10寸,求直径AB的长.请你解答这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC6米,落在斜坡上的影长CD4米,ABBC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为( )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)

A. 10.61 B. 10.52 C. 9.87 D. 9.37

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点FDE的延长线上,∠BFE=90°,连接AF、CF,CFAB交于G.有以下结论:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案