如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:
(1)△ABD≌△ACD;
(2)BE=CE.
![]()
【考点】全等三角形的判定与性质;等腰三角形的性质.
【专题】证明题.
【分析】(1)根据全等三角形的判定定理SSS可以证得△ABD≌△ACD;
(2)利用(1)的全等三角形的对应角相等可以推知∠BAE=∠CAE;然后根据全等三角形的判定定理SAS推知△ABE≌△ACE;最后根据全等三角形的对应边相等知BE=CE.
【解答】证明:(1)∵D是BC的中点,
∴BD=CD,
在△ABD和△ACD中,
,
∴△ABD≌△ACD(SSS);
(2)由(1)知△ABD≌△ACD,
∴∠BAD=∠CAD,即∠BAE=∠CAE,
在△ABE和△ACE中,
![]()
∴△ABE≌△ACE (SAS),
∴BE=CE(全等三角形的对应边相等).
【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质.解答此题也可以利用等腰三角形“三线合一”的性质来证明相关三角形的全等.
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=AC,D是AB的中点,且DE⊥AB于点D,AB=10,BC=4,则△BEC的周长( )
![]()
A.14 B.6 C.9 D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com