精英家教网 > 初中数学 > 题目详情

【题目】⊙O的直径为2,AB,AC为⊙O的两条弦,AB=,AC=,则∠BAC=_____

【答案】15°或75°.

【解析】

根据题意点C的位置有两种情况,如图1,∠BAC=∠CAO+∠OAB;如图2,∠BAC=∠OAB-∠OAC,进而得出答案.

解:如图1,连接OC,OA,OB,过点OOE⊥AC于点E,

∵OA=OB=1,AB=

12+12=(2

∴∠AOB=90°,

∴△OAB是等腰直角三角形,∠OAB=45°,

∵AC=,OE⊥AC,

∴AE=

∴cos∠EAO=

∴∠EAO=30°,

如图1时,∠BAC=∠CAO+∠OAB=30°+45°=75°;

如图2时,∠BAC=∠BAC=∠OAB﹣∠OAC.=45°﹣30°=15°.

故答案为15°75°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。

①如果要围成面积为45平方米的花圃,AB的长是多少米?

②能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数(利润=售价﹣制造成本)

(1)写出每月的利润w(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?

(3)当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.

(1)求证:四边形ABEF是平行四边形;

(2)∠ABC为多少度时,四边形ABEF为矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,ADBC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边中,,点从点出发沿边向点的速度移动,点从点出发沿边向点的速度移动,两点同时出发,它们移动的时间为.

1)用分别表示的长度;

2)经过几秒钟后,为等边三角形?

3)若两点分别从两点同时出发,并且都按顺时针方向沿三边运动,请问经过几秒钟后点与点第一次在的哪条边上相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(足够长),已知计划中的建筑材料可建围墙的总长度为50m 设饲养室为长为x(m),占地面积为

(1)如图 ,问饲养室为长x为多少时,占地面积y 最大?

(2)如图要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:只要饲养室长比(1)的长多2m就行了.请你通过计算,判断小敏的说法是否正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,8),且抛物线的对称轴是直线x=﹣2.

(1)求此抛物线的表达式;

(2)连接AC,BC,若点E是线段AB上的一个动点(与点A,B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,CEF的面积为S,求S与m之间的函数关系式;

(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并判断S取得最大值时BCE的形状;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案